首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用大气等离子喷涂技术(APS)在C/C复合材料表面制备了mullite/ZrB2-MoSi2双层抗烧蚀涂层。借助XRD、SEM、EDS等分析手段对涂层的组织结构进行研究;基于氧丙烯焰烧蚀试验考察ZrB2-MoSi2/mullite复合涂层对C/C复合材料高温耐烧蚀性能的影响。结果表明,在1700 °C和1800 °C的氧丙烯焰下烧蚀60 s,ZrB2-MoSi2/mullite涂层试样的质量烧蚀率分别为3.49×10-3 g/s与3.77×10-3 g/s。其与单层ZrB2-MoSi2涂层试样相比,ZrB2-MoSi2/mullite涂层试样展现了出色的抗烧蚀性能。烧蚀过程中形成的硅酸盐玻璃可以作为热障层而减少氧气的进一步渗透,并且还具有自我封填缺陷的能力,使ZrB2-MoSi2/mullite涂层表现较好的抗烧蚀性。  相似文献   

2.
为了提高C/C复合材料的抗烧蚀性能,通过等离子喷涂法在C/C表面制备了Si C/Al_2O_3内层和Zr B_2/Si C/Ta_2O_5外层的双层涂层,通过XRD,SEM和EDS分析了涂层烧蚀前后的物相组成、微观结构和成分分布。烧蚀前涂层表面没有裂纹并且内层与基体、内层与外层之间结合良好。元素Zr、Si、Ta在涂层表面的分布相近,涂层表面成分分布均匀性良好。通过氧乙炔火焰在1800℃下对涂层的抗烧蚀性能进行考核。烧蚀过程中形成的镶嵌结构有利于阻挡氧气的渗入,Ta-Si-O玻璃层的形成封填了涂层孔隙,对基体有良好的保护效果,涂层表现出了较好的抗烧蚀性能。  相似文献   

3.
针对TiC涂层在高温烧蚀过程中氧化生成熔融TiO_2,当温度高于2000℃时,熔融TiO_2的厚度随之增加,这将进一步导致涂层结合强度降低,本文采用等离子喷涂方法制备了不同ZrO_2添加量的TiC/ZrO_2复相涂层,以提高涂层的抗冲刷性能。分别利用XRD、SEM和EDS对烧蚀前后材料的相结构、微观形貌和成分进行了分析,探讨了添加高熔点相ZrO_2的复合涂层的抗烧蚀机理。结果表明:TiC/ZrO_2复相涂层展现出更好的抗烧蚀性能,2000℃下的质量烧蚀率仅为1.5×10-4 g·cm~(-2)·s~(-1)。烧蚀过程中产生的ZrO_2层可以阻止内部TiC的进一步氧化,并且可以在一定程度上降低氧乙炔焰对涂层产生的剪切力,以提高涂层的抗冲刷性能。  相似文献   

4.
目的在C/C复合材料表面制备SiC涂层,提高C/C复合材料抗烧蚀性能。方法采用真空等离子喷涂技术在C/C复合材料表面制备纯Si涂层,在惰性气氛保护下对涂层高温热处理,纯Si涂层与C元素在高温下反应,原位生成SiC涂层。利用电弧加热器在不同烧蚀温度下,分别考核涂层的驻点烧蚀性能,并采用OM、SEM、EDS和XRD等对烧蚀前后的微观形貌和物相成分进行分析。结果在C/C复合材料表面制备了致密的SiC涂层,涂层中没有明显的裂纹存在,并在涂层下方产生较深的渗透区域,深度超过涂层厚度。制备的SiC涂层在1400℃下烧蚀50 s,涂层完整,具有良好的驻点烧蚀性能;在1600℃和1650℃下烧蚀50 s,涂层部分剥落,C/C复合材料基体产生烧蚀。结论 SiC涂层在高温下氧化成Si O2玻璃态膜,并覆盖在C/C复合材料表面,对基体具有良好的保护作用。随着烧蚀温度的提高,在超音速气流的冲刷下,由于热膨胀系数不匹配和SiC主动氧化的原因,涂层在烧蚀面边缘出现剥落,且剥落现象越来越严重,涂层失去对C/C基体的保护作用,烧蚀性能下降。  相似文献   

5.
利用喷雾干燥与真空烧结技术制备团聚型ZrB_2-MoSi_2复合粉末,以这些粉末为原料,通过低压等离子喷涂法制备了ZrB_2-30%MoSi_2(质量分数)复合涂层(SZM涂层)。作为对比,利用机械混合粉末制备了ZrB_2-30%MoSi_2复合涂层(MZM涂层)。借助SEM、XRD和EDS等对涂层的组织结构进行研究,并利用霍尔流速计和松装密度计对团聚粉末的流动性和松装密度进行了测试。此外,对涂层的显微硬度、孔隙率和氧化特性均进行了研究。结果表明:喷雾干燥粉末在1200℃真空烧结1 h后,它的流动性和松装密度分别达到25.8s/50 g和1.12 g/cm~3。与MZM涂层相比,SZM涂层中的MoSi_2分布更加均匀,而且结构更加致密。所以团聚粉末制备的涂层在1500℃表现出更好的抗氧化性能。  相似文献   

6.
为提高C/C复合材料的抗高温烧蚀性能,利用大气等离子喷涂技术在C/C复合材料表面制备ZrB_2-SiC复合涂层,并对其进行抗高温氧-丙烷焰流烧蚀试验。采用X射线衍射仪(XRD)、扫描电子显微镜(SEM)及能谱分析仪(EDS)对涂层的物相成分、微观形貌等进行检测分析。结果表明:大气等离子喷涂能在C/C复合材料表面制备出均匀致密的ZrB_2-SiC复合涂层,涂覆有ZrB_2-SiC涂层的C/C复合材料分别承受1 600、1 700和1 800℃的氧-丙烷焰流烧蚀300 s后依次增重0.63%、0.76%和0.71%,而烧蚀600s后试样质量烧蚀率分别为9.42×10~(-5)、2.04×10~(-4)和1.04×10~(-3)g/s。ZrB_2-SiC涂层显著提高了C/C复合材料的抗烧蚀性能,涂层氧化生成的玻璃态SiO_2能有效填充孔隙。直到SiO_2耗尽,涂层烧蚀后的孔洞成为环境中的氧进入基体的通道,导致基体烧蚀。  相似文献   

7.
针对TiC涂层在高温烧蚀过程中氧化生成熔融TiO2。当温度高于2000℃时,熔融TiO2的厚度随之增加,这将进一步导致涂层结合强度降低,本文采用等离子喷涂方法制备了不同ZrO2添加量的TiC/ZrO2复相涂层,以提高涂层的抗冲刷性能。分别利用XRD、SEM和EDS对烧蚀前后材料的相结构、微观形貌和成分进行了分析,探讨了添加高熔点相ZrO2的复合涂层的抗烧蚀机理。结果表明:TiC/ZrO2复相涂层展现出更好的抗烧蚀性能,2000℃下的质量烧蚀率仅为1.5×10-4 g.cm-2.s-1。烧蚀过程中产生的ZrO2层可以阻止内部TiC的进一步氧化,并且可以在一定程度上降低氧乙炔焰对涂层的产生的剪切力,以提高涂层的康冲刷性能。  相似文献   

8.
采用化工冶金包覆、固相合金化和喷雾造粒技术制备了NiCr/Cr3C2复合粉体,并采用大气等离子喷涂技术制备了NiCr/Cr3C2复合涂层,采用SEM、显微硬度计、万能试验机和马弗炉对粉体和涂层的显微结构、涂层的显微硬度、结合强度和氧化性能进行了分析。结果显示:NiCr/Cr3C2涂层呈典型的层状结构,各层间结合良好,结合强度为(27.4±5) MPa,涂层显微硬度约850 HV0.2,为结合层显微硬度的2.7倍,涂层为典型的脆性断裂,断裂的位置发生在涂层的层与层之间。NiCr/Cr3C2涂层850 ℃氧化动力学曲线基本符合抛物线氧化规律。在氧化过程中涂层表面生产了氧化膜,且氧化膜会发生脱落,同时涂层内部出现了偏析现象,析出了金属Cr。  相似文献   

9.
采用等离子喷涂技术在铜基体表面制备了Ag-SnO_2涂层,应用XRD和SEM对涂层的相结构和微观组织进行了表征,通过拉伸和硬度试验测定了涂层的力学性能,并采用电弧侵蚀试验测试了涂层的耐电弧侵蚀性能。结果表明,所得涂层结构均匀致密,涂层内纳米级SnO_2颗粒均匀分布在银基体中;涂层的力学性能和电弧侵蚀性能与块体合金接近;电弧侵蚀试验后,涂层表面阴极斑点分散,烧蚀轻微,表明所制备的Ag-SnO_2涂层具有良好的耐电弧侵蚀特性。  相似文献   

10.
利用两步工艺结合泥浆烧结法和化学气相反应法在C/C复合材料表面制备了一种新型的SiC-ZrB_2涂层。SiC-ZrB_2涂层由分散的ZrB_2相和连续的SiC相组成,涂层与C/C复合材料基体结合较好。与C/C复合材料相比,SiC-ZrB_2涂层包覆C/C复合材料试样具有更好的抗烧蚀性能。SiO_2-ZrO_2陶瓷层的阻氧作用、气态氧化产物的散热以及ZrO_2的钉扎作用是涂层试样具有良好抗烧蚀性能的主要原因。  相似文献   

11.
C/C复合材料在高温燃气高速冲刷环境中的严重氧化烧蚀限制了其在航空航天等领域的广泛应用,采用抗烧蚀涂层技术是目前提高该材料高温抗烧蚀性能的有效方法。综述了近年来国内外C/C复合材料高温抗烧蚀涂层在玻璃涂层、金属涂层、陶瓷涂层等体系方面的研究进展,总结并评价了C/C复合材料抗烧蚀涂层的抗烧蚀性能测试技术及其研究成果,提出了C/C复合材料高温抗烧蚀涂层在未来研究中潜在的重点发展方向。  相似文献   

12.
在碳纳米管的辅助下制备含锆沥青,利用扫描电镜(SEM)、X射线衍射(XRD)、X射线光电子能谱(XPS)、热重分析(TG)等方法对含锆沥青及其碳化产物进行分析,利用液相浸渍法制备C/C复合材料,并对其进行动态烧蚀实验。结果表明:含锆碳基体内部均匀分布纳米陶瓷微球堆积成的陶瓷层,主要成分为t-ZrO_2;陶瓷相提升了含锆碳基体的抗烧蚀能力;C/C复合材料基体中的陶瓷相在烧蚀过程中烧结为陶瓷层,有效提高了材料的抗烧蚀性能。  相似文献   

13.
采用大气等离子喷涂技术在45钢表面制备了NiCr/Cr_3C_2涂层,利用SEM、XRD和摩擦磨损试验机对涂层的显微结构、物相组成以及摩擦磨损性能进行了分析。结果表明,该涂层结构致密,涂层的主晶相为NiCr合金相和Cr_3C_2相,还有少量的NiO和Cr_2O_3相。涂层的摩擦因数随着温度的升高先增大后减小,400℃时,摩擦因数最大,约为0.8左右,800℃时,摩擦因数最小,约为0.39左右。涂层的磨损率随着温度的升高先增大后稍有降低。低温下,涂层的主要磨损机制是脆性断裂;高温下,主要磨损机制为塑性变形以及氧化。  相似文献   

14.
王富强  陈建  张智  谢栋  崔红 《表面技术》2022,51(2):249-258, 305
目的提高C/C复合材料在超高温下的抗烧蚀性能。方法采用化学气相沉积法,在C/C复合材料表面制备SiC过渡层,然后以惰性气体保护等离子喷涂工艺在带有SiC过渡层的C/C材料表面制备W涂层,研究所制备的W-SiC-C/C复合材料的微观形貌与结构特征。以200 kW超大功率等离子焰流,考核W-SiC-C/C材料的抗烧蚀性能,并与无涂层防护的C/C材料进行对比分析。结果W涂层主要为层状的柱状晶结构。W涂层与SiC过渡层、过渡层与基体界面呈镶嵌结构,结合良好。SiC过渡层阻止了W、C元素相互迁移与反应。在驻点压力为4.5 MPa、温度约5000 K、热流密度为36 MW/m2的烧蚀条件下,当烧蚀时间小于10 s时,涂层对C/C材料起到了较好的保护作用,W涂层发生氧化烧蚀,基体未发现烧蚀,平均线烧蚀率为0.0523 mm/s;当烧蚀时间超过15 s后,涂层防护作用基本失效,基体C/C材料发生烧蚀现象。结论以W涂层、SiC过渡层为防护的C/C复合材料,能够适用于短时间超高温的烧蚀环境,如固体火箭发动机等。W涂层的熔融吸热、氧化耗氧以及SiC过渡层的氧化熔融缓解涂层热应力和氧扩散阻碍的联合作用,提高了C/C材料的抗烧蚀性能。  相似文献   

15.
大气等离子喷涂WC和Cr2C3基涂层   总被引:2,自引:2,他引:0  
等离子喷涂技术能有效延长工件的服役寿命,具有重要的工程应用价值.主要研究了喷涂电流对涂层性能的影响,并观察了涂层的组织形貌,测试了摩擦学特性.结果表明,WC基涂层与Cr2C3基涂层相比具有更高的硬度和更低的摩擦因数.当喷涂电流在500~600 A变化时,两种材料的涂层硬度相当;但是当喷涂电流为450A,WC-12Co涂层呈现出最高硬度.随着电流的变化,Cr2C310(Ni20Cr)涂层的摩擦因数变化不大;当电流为600A时,WC基涂层的摩擦因数最小.  相似文献   

16.
通过先驱体浸渍裂解法制备了不同ZrC-SiC含量的C/C-ZrC-SiC复合材料,并研究了不同陶瓷含量对材料显微结构和烧蚀性能的影响。C/C-SiC和C/C-ZrC-Si C复合材料在2300°C的烧蚀火焰下均呈现出优异的抗烧蚀性能。随着Zr C陶瓷含量的增加,在烧蚀过程中形成了连续的氧化膜涂层及固态的Zr-Si-O中间相,并且氧化物薄膜的结构与Zr C-Si C陶瓷的含量密切相关。固态的Zr O_2-Zr C和Zr-Si-O中间相可以适当提高Si O_2的黏度,从而提升氧化膜的抗剥蚀能力。连续的Si O_2-Zr O_2-Zr C-Si C层将作为热量和氧气的扩散障碍层,阻止其向材料内部扩散而引起材料的进一步烧蚀。Zr C和Si C含量分别为27.2%和7.56%时,C/C-Zr C-Si C复合材料表现出更好的抗烧蚀性能,其质量烧蚀率和线烧蚀率分别为-3.51 mg/s和-1.88μm/s。  相似文献   

17.
为改善TiO2溅射靶材主要依赖进口的局面,采用大气等离子喷涂技术在不锈钢SUS304平板基体及管状基体上制备了TiO2涂层。利用扫描电子显微镜对涂层形貌进行了观察,并对涂层与基体的结合强度、涂层孔隙率及抗热震性能分别进行了表征。结果表明:粉末熔化及铺展良好,截面可见典型层状结构。涂层与基体以机械结合为主,断裂基本发生在基体与粘结层界面处;涂层的孔隙率较低,同时具有良好的抗热震性能。厚涂层制备过程中,采用循环水冷却方法对不锈钢SUS304管状基体进行冷却,涂层沉积速度快且无开裂和脱落,涂层厚度可达8 mm。通过对冷却装置的改进及喷涂工艺的进一步优化,有望在大尺度管状基体上制备厚涂层以满足溅射蒸镀辊的需要。  相似文献   

18.
对铝合金表面等离子喷涂制备Al/SiC复合涂层进行了研究,探索了SiC体积分数对复合粉末的沉积行为以及Al/SiC复合涂层性能的影响规律。研究发现,在等离子焰流中,纯SiC发生降解和氧化。SiC含量越高,等离子喷涂沉积Al/SiC复合涂层越困难,纯SiC沉积后与基体粘结层之间存在裂纹;SiC含量越高,Al/SiC复合涂层硬度越高。Al/SiC(50:50)复合涂层厚度70μm,显微硬度达到3690 MPa,对铝合金表面起到强化效果。  相似文献   

19.
采用纳米ZrB_2粉体研究了ZrB_2基超高温陶瓷的放电等离子烧结行为。由于采用纳米粉体,单相ZrB_2在1550℃的低温下即发生快速的致密化烧结。ZrB_2-Si C陶瓷经1800℃放电等离子烧结后可实现完全致密化,并且材料的抗弯曲强度高达1078±162MPa。在1700℃采用放电等离子烧结成功制备了ZrB_2-Si C-Cf复合材料,材料断口表现出明显的纤维拔出现象,导致其具有高的断裂韧性值(6.04 MPa·m~(1/2))和非脆性断裂的模式。同时,ZrB_2-Si C-Cf复合材料具有很高的临界热冲击温差(627℃),表明该材料具有优异的抗热冲击性能。  相似文献   

20.
采用真空热压烧结法制备两种成分的ZrB_2增强NbMo基复合材料:42.5%Nb+42.5%Mo+15%ZrB_2、42.5%Nb+42.5%Mo+10.5%ZrB~(2+)4.5%SiC(体积分数)。烧结工艺为温度1600℃,轴向应力30 MPa,保护气体为氩气,保温时间分为1 h和2 h。使用扫描电子显微镜、能谱分析仪和X射线衍射仪分析材料的微观结构和相组成,使用显微维氏硬度计和液压式万能试验机检测材料的力学性能。研究发现,ZrB颗粒均匀分布于NbMo固溶体中,在添加SiC的样品中有SiC的剩余以及MoSi_2相的生成。与无陶瓷相添加的样品相比,添加陶瓷相的样品的抗压强度由1380.15 MPa提高至1974.17 MPa,屈服强度提高至1664.13 MPa,硬度提高3~5倍。保温时间越长,材料的抗压强度、屈服强度和硬度越高。复合材料强度和硬度提高是固溶强化以及ZrB和NbMo之间良好的界面结合力的结果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号