首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
分别采用真空热压烧结法和压力浸渗法制备了金刚石/Al复合材料,所得材料的热导率分别达到410~420和673 W/(m·K)。通过传热模型探讨了两种方法制得材料的内部传热机理,并定义了参数"搭桥贡献率",以量化金刚石颗粒搭桥对材料热导率提升所做的贡献。结果表明,采用压力浸渗工艺时,较高的金刚石含量,较低的界面热阻,尤其是金刚石颗粒搭桥所构成的快速传热通道,可显著提高材料的热导率。  相似文献   

2.
采用热压成型法制备纺织结构碳纤维增强聚醚醚酮(CFF/PEEK)航空热塑性复合材料。通过对碳纤维(CF)进行去浆、活化,及采用磺化聚醚醚酮(SPEEK)进行表面涂层,显著提高了CFF/PEEK复合材料的层间剪切强度。讨论了热压温度、压力等工艺参数对材料综合力学性能的影响规律,确定优化工艺条件,制备的复合材料拉伸强度和弯曲强度分别达到714.29 MPa和955.84 MPa。借助扫描、金相显微镜等观察手段,发现经过界面改性处理后,复合材料断裂发生在基体内部而非界面处,基体与增强体浸润性和结合性良好。  相似文献   

3.
采用FAPAS法制备AlMgB14预反应粉,将其与TiB2粉混合,在烧结温度1500℃,轴向压力60 MPa,升温速度100℃/min、保温时间15 min条件下制备了具有较理想组织结构的AlMgB14-30wt%TiB2复合材料。通过HRTEM、SEM和EDS对AlMgB14-30wt%TiB2的微观结构进行表征,研究结果表明:AlMgB14-30wt%TiB2复合材料的显微硬度31.5 GPa,断裂韧性K1C值可达到3.65 MPa.m1/2,与机械合金化/单轴热压法制备的结果一致。并从微观结构分析了AlMgB14-TiB2复合材料的增韧机制主要来源于TiB2增强相与基体间形成高强结合界面。FAPAS法为AlMgB14基复合材料的制备开拓了低成本高效的新途径。  相似文献   

4.
基于电工材料高电导、高强度的发展需求,本工作通过粉末真空热压烧结成功制备出微量Cr元素掺杂的功能化碳纳米管增强铜基复合材料(CuCr/CNTs),系统研究了热压烧结及轧制工艺对复合材料电导率和力学性能的影响.研究发现,在烧结温度为900℃、保温1 h、保压压力为50 MPa的工艺下,样品的电导率高达96.2%IACS,硬度为73.0HV.通过对微观组织与性能的分析,发现热压烧结工艺显著影响基体晶粒的尺寸以及界面处碳化物的数量,界面处适量Cr3 C2纳米相的存在可以改善界面润湿性,增强界面结合,有利于电流传递和载荷传递.通过进一步冷轧,CNTs定向排列并均匀分散,样品的电导率和力学性能均有提升,在电导率保持96.6%IACS时,其屈服强度可达311 MPa,拉伸强度达到373 MPa,具有非常好的工程应用前景.  相似文献   

5.
黄露  刘斌  王浩伟 《材料导报》2011,25(8):85-87,99
高体积分数颗粒增强金属基复合材料结合了陶瓷和金属的性能优势,具有轻质、高强、高模量的特点,是一种颇具应用前景的装甲材料,但此方面的报道研究较少。采用压力浸渗法制备了颗粒体积分数为50%、不同粒径的B4C/ZL101复合材料。结果表明,预制件温度为550℃、浸渗熔体温度为750℃时,采用压力浸渗可以得到颗粒分布均匀、致密度高的复合材料,组成相简单;复合材料的力学性能表明,B4C颗粒的粒径越小,复合材料的力学性能越好。当B4C颗粒粒径为3μm时,压缩强度、抗弯强度、布氏硬度分别可达1000MPa、640MPa、285HB。  相似文献   

6.
真空压力浸渗法制备SiCp/Al的研究   总被引:4,自引:0,他引:4  
用真空压力浸渗法制备了SiCp/Al复合材料,研究表明,这种工艺的优点是制备的SiP/Al复合材料颗粒含量高,热膨胀系数低且可调整,如能提供精密模具,该工艺对于开发SiP/Al复合材料作为一析兴电子封装材料是极具竞争力的。研究还发现,将真空压力浸渗法制备的颗粒含量的复合材料过重熔稀释可制成颗粒含量适中、气孔率低、无氧化夹杂和界面反应的最终复合材料,与复合铸造法制备的同样材料相比,这种材料具有低的气  相似文献   

7.
采用真空辅助熔渗工艺制备泡沫铁骨架作为增强SiCp/A359复合材料A359-SiCp/Fe,对比进行泡沫铁增强前后和T6热处理前后,两种材料的显微硬度和高温磨损性能,明确泡沫铁和T6热处理对A359-SiCp/Fe复合材料高温磨损性能增强的效果,并结合使用SEM与EDS对表面磨损形貌、磨屑形貌的观察表征,以探究该材料在不同温度下的高温磨损机理。结果表示,使用真空辅助熔渗工艺制备A359-SiCp/Fe, Al-Fe界面结合良好,不仅形成了机械结合,还形成了化学冶金结合(靠近铝基体界面的相为Al12Fe5Si3;靠近泡沫铁基体处为Fe2Al5相;远离泡沫铁组织,呈游离状态的合金相为Al4FeSi)。A359-SiCp/Fe在300~500℃的磨损量仅为未增强合金的25%~75%,有效将高温环境下的使用温度提升50~100℃以上。T6热处理能够明显提...  相似文献   

8.
用Al_2O_3作为界面修饰剂,通过反应烧结,在SiC颗粒之间形成莫来石界面,制备SiC预制件,采用无压熔渗法制备3D-SiC/Al互穿式连续结构复合材料。基于正交实验研究了Al_2O_3添加量、预制件烧结时间、熔渗温度和熔渗时间对3D-SiC/Al复合材料抗弯强度和热导率的影响。实验结果表明,Al_2O_3添加量对复合材料抗弯强度和热导率影响显著,复合材料获得最大抗弯强度344 MPa和热导率165 W/(m·K)的制备工艺为:氧化铝添加量2.0%(原子分数),预制件烧结时间2h,熔渗温度950℃,熔渗时间1h。  相似文献   

9.
采用高能球磨粉末冶金法制备了15%SiCp/2009Al复合材料,研究了球磨转速、球磨时间、加热抽真空工艺、热压成型以及热挤压比对复合材料力学性能的影响。结果表明,球磨转速和时间、热压成型工艺是影响复合材料力学性能的重要因素。较长时间高转速球磨使SiC颗粒均匀分布,高温真空热压改善粉末之间的结合是获得高性能复合材料的关键。转速190 r/min、球磨6 h制备的复合粉末经高温真空热压、挤压后的复合材料SiC颗粒均匀分布,材料的抗拉强度高达650 MPa,延伸率大于5%。   相似文献   

10.
SiCf/SiC复合材料的制备与力学性能   总被引:2,自引:0,他引:2  
分别采用先驱体裂解-热压和先驱体浸渍-裂解方法制备出了SiCf/SiC复合材料.重点探讨了不同制备工艺对复合材料纤维/基体间界面和断裂行为的影响.研究表明,采用先驱体裂解-热压工艺制备复合材料时,虽然烧结液相可以促进复合材料的致密化,但其同时导致纤维与基体间的界面结合强以及纤维本身性能的退化,因此复合材料表现为脆性断裂,具有较低的力学性能.而采用先驱体浸渍-裂解法制备复合材料时,由于致密化温度较低,复合材料中纤维与基体的界面结合较弱,而且纤维的性能保留率较高,因此,纤维能够较好地发挥补强增韧作用,复合材料具有较好的力学性能,其抗弯强度和断裂韧性分别为703.6MPa和23.1Pa.m1/2.  相似文献   

11.
热模压辅助先驱体浸渍裂解制备Cf/SiC复合材料研究   总被引:6,自引:2,他引:4       下载免费PDF全文
以聚碳硅烷为先驱体,采用热模压辅助先驱体浸渍裂解工艺制备3D-B Cf/SiC复合材料,研究了热模压辅助对3D-B Cf/SiC复合材料致密度和力学性能的影响。结果表明:先驱体浸渍裂解制备陶瓷基复合材料第一次浸渍后引入高温热模压工艺可以改善材料微观结构,显著提高材料的致密度和力学性能。其中1600℃,10MPa,1h下热模压辅助先驱体浸渍裂解6次制备的3D-B Cf/SiC复合材料的密度为1.79g/cm3,弯曲强度高达672MPa,断裂韧性达18.9MPa·m1/2,剪切强度接近50MPa,且具有较好的抗热震性和高温抗氧化性。  相似文献   

12.
TiB2-TiC复相陶瓷的结构与性能研究   总被引:1,自引:0,他引:1       下载免费PDF全文
TiB2-TiC复合粉制备的TiB2-TiC复相陶瓷的相对密度达99.8%,硬度为 93.2HRA,断裂韧性为5.53MPa·m1/2。显微结构研究表明:TiB2-TiC烧结体体内的位错和残余气孔影响材料性能。复合粉烧结体晶粒尺寸细小,大小分布均匀,晶粒之间界面干净,无杂质沉积,烧结体中TiB2和TiC两相界面接合处元素B,C,Ti的含量存在梯度变化,都有利于烧结体性能提高。TiB2晶粒生长存在取向性。  相似文献   

13.
Carbon fibre reinforced magnesium alloy matrix composites were fabricated by using liquid–solid extrusion directly following vacuum infiltration technique. The experimental results showed that the microstructures of Cf/Mg composites depended on the holding pressure. The porosity was reduced gradually, and the densification was improved obviously, respectively, with the increase of the holding pressure. The densification, hardness and Ultimate tensile strength of Cf/Mg composites were significantly improved as the holding pressure increased in the range of 0.1–15 MPa. The densification was not obvious, but the UTS of the Cf/Mg composites decreased gradually as the holding pressure increased in the range of 25–45 MPa. The Cf/Mg composites presented a good performance when the holding pressure was about 15 MPa.  相似文献   

14.
《Materials Letters》2002,52(4-5):334-341
Al–12 wt.% Si alloy matrix composites reinforced with high volume fraction of Sip were fabricated by squeeze infiltration. The effects of the compacting pressure on the volume fraction of Sip in preforms, and the influences of Sip size and volume fraction on the properties of Al/Sip composites were examined through this study. Si particles were compacted at different pressure of 40–130 MPa followed by sintered at 1000 °C for 7 h to obtain preforms containing 60–70 volume fraction (vol.%) of Sip. The sintered preforms were then infiltrated with Al–12 wt.% Si alloy at 750 °C under a 75 MPa squeeze infiltration pressure. It was found that lower coefficient of thermal expansion (CTE) and smaller density may be obtained with higher Sip volume fraction, yet increasing Sip volume fraction leads to higher amount of porosities in the composites and thus lowers the thermal conductivity (TC) and flexural strength. Besides, with the same Sip volume fraction, coarse Si particles result in higher CTE and TC, while finer Si particles may lower CTE and enhance the flexural strength of the composites effectively. From the results obtained in this study, it is expected that the high volume fraction Sip reinforced Al/Sip composites posses good potential in electronic packaging applications.  相似文献   

15.
ZrB2 (zirconium diboride)-based ceramics reinforced by 15vol.% SiC whiskers with high density were successfully prepared using MoSi2 as sintering aids. The effects of sintering condition and MoSi2 content on densification behavior, phase composition, and mechanical properties of SiCw/ZrB2 composites were studied. Nearly, fully dense materials (relative density >99%) were obtained by hot-pressing (HP) at 1700°C–1800°C in flow argon atmosphere. The grain size of ZrB2 phase in the samples sintered by HP at 1700°C–1800°C were very fine, with mean size below 5 μm. Mechanical properties (such as flexural strength, fracture toughness, and Vickers hardness) of the sintered samples were measured. The sample with 15vol.% MoSi2 addition sintered by HP at 1750°C displayed the best mechanical properties.  相似文献   

16.
Reactive hot-press (1800-1880 °C, 30 MPa, vacuum) is used to fabricate relatively dense B4C matrix light composites with the sintering additive of (Al2O3 +Y2O3). Phase composition, microstructure and mechanical properties are determined by methods of XRD, SEM and SENB, etc. These results show that reactions among original powders B4C, Si3N4 and TiC occur during sintering and new phases as SiC, TiB2 and BN are produced. The sandwich SiC and claviform TiB2 play an important role in improving the properties. The composites are ultimately and compactly sintered owing to higher temperature, fine grains and liquid phase sintering, with the highest relative density of 95.6%. The composite sintered at 1880 °C possesses the best general properties with bending strength of 540 MPa and fracture toughness of 5.6 MPa m1/2, 29 and 80% higher than that of monolithic B4C, respectively. The fracture mode is the combination of transgranular fracture and intergranular fracture. The toughening mechanism is certified to consist of crack deflection, crack bridging and pulling-out effects of the grains.  相似文献   

17.
SiC fiber-reinforced SiC–matrix ceramic composites (SiCf/SiC) were fabricated by vacuum infiltration of a SiC slurry into Tyranno™-SA grade-3 fabrics coated with a 200 nm-thick pyrolytic carbon (PyC) layer followed by hot pressing using a transient eutectic-phase. The density of the composite was improved using a special infiltration apparatus with a pressure gradient and alternating tape insertion between fabrics. Their overall properties were compared with those of monolithic SiC and composite containing chopped fibers. Although the density of the composites decreased with increasing fiber fraction, SiCf/SiC containing 50 vol.% fibers had a density of 3.13 g/cm3, which is the highest reported thus far. The composites containing continuous fibers had a maximum flexural strength of 607 MPa and a step increase in the stress–displacement behavior during the three-point bending test due to fiber reinforcement, which was not observed in the monolith.  相似文献   

18.
Porous C/C-SiC composites were prepared through a two-step chemical vapor infiltration process,and a multi-interlayer joint of Li20-MgO-Al_2O_3-SiO_2(LMAS) was applied to join C/C-SiC composites and lithium aluminum silicate(LAS) glass ceramics by means of a vacuum hot-pressing technique.Plenty of SiC whiskers were generated in the pores of low-density C/C composites during chemical vapor deposition process,which is essentia! to form a zigzag interface structure between C/C-SiC substrate and the LMAS interlayer.The average shear strength of the LMAS joint was improved from 12.17 to 19.91 MPa after changing the composites from high-density C/C composites(1.75 g/cm~3) with a CVD-SiC coating to the C/C-SiC composites with a low density(1.48 g/cm~3).The improvement of the joint strength is mainly attributed to the formation of the inlay structure at the SiC-C/C and SiC-LMAS interfaces.  相似文献   

19.
Diamond/Al composites were prepared by vacuum hot pressing (VHP) to get high thermal properties. The sintering temperature, pressure and time in the VHP process were optimized. Microstructures, thermal properties, interface reaction product and its effect on the properties of the composites were investigated. The result shows that the sintering temperature and time are key parameters to get high thermal property of the composites. The composites with 20–55 vol% diamond sintered at 650 °C for 90 min under a pressure of 67 MPa exhibit thermal conductivities of 320–567 W/mK, over 90% of the theoretical predictions by the differential effective medium (DEM) scheme. The high thermal conductivity is attributed to the favorable interface conductance, while the formation of aluminum carbide at diamond–Al interface is found to be negative.  相似文献   

20.
In this study, W-SiC/Cu composites were prepared by tape casting and vacuum hot-pressing sintering. The microstructures and properties of the composites were studied by means of X-ray diffraction, X-ray photoelectron spectroscopy, field emission scanning electron microscopy, Vickers hardness test, bending strength test and coefficient of thermal expansion (CTE) test. The results showed that W2C, WC and WSi2 formed in the composites. The effects of SiC particle size on the relative densities, Vickers hardness, bending strength and CTE of composites were investigated. Vickers hardness, bending strength and CTE of the composite with SiC particle size of 6?µm reached the optimal values, which were 445.2?HV, 726.1?MPa, 9.24?ppm?K?1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号