共查询到20条相似文献,搜索用时 31 毫秒
1.
建立了聚丙烯塑料的微波消解方法,并采用电感耦合等离子体原子发射光谱法测定了铅、镉、汞和铬的含量。实验结果表明:采用5.0 mL硝酸和2.0 mL过氧化氢的混合酸,通过分段升温,并在190℃下消解30 min,可使样品完全分解,得到精密度较好的分析结果。实验测得铅、镉、汞和铬的检出限分别为5.20 mg/kg,0.05 mg/kg,5.00 mg/kg,3.78 mg/kg。采用本方法测定ERM-EC680聚丙烯塑料中的铅、镉、汞和铬,测定值与认定值相符。对聚丙烯塑料的铅、镉、汞和铬进行8次测定,得到相对标 相似文献
2.
3.
轧钢生产过程中产生的含轧制油、乳化剂及少量重金属的一类废水,常被称为冷轧乳化液废水。这类液体废物中含有的重金属元素若处理不当,会对环境造成严重的污染,因此准确测定冷轧乳化液废水中重金属含量对其后续处理方案的选择具有指导作用。采用硝酸、盐酸、过氧化氢酸溶体系并使用微波消解法消解样品,可有效消解有机物质且不会造成待测元素的损失。选择Fe 259.940 nm、Zn 209.994 nm、Cu 324.754 nm、Ni 231.604 nm、Pb 220.353 nm、Cd 226.502 nm作为分析谱线,建立了电感耦合等离子体原子发射光谱法(ICP-AES)测定冷轧乳化液废水中铁、锌、铜、镍、铅、镉的方法。讨论了样品前处理方式、消解酸及其用量,研究了共存元素对铁、锌、铜、镍、铅、镉测定的影响。结果表明:在仪器的最优工作条件下,各元素校准曲线的线性相关系数均不小于0.999 6;铁、锌、铜、镍、铅、镉的检出限分别为0.004 9、0.002 1、0.002 0、0.001 2、0.001 4和0.001 0 mg/L。对冷轧乳化液废水中铁、锌、铜、镍、铅、镉含量进行测定,各元素测定结果的相对标准偏差(RSD,n=7)为0.32%~2.8%,加标回收率为96%~104%。 相似文献
4.
轧钢生产过程中产生的含轧制油、乳化剂及少量重金属的一类废水,常被称为冷轧乳化液废水。这类液体废物中含有的重金属元素若处理不当,会对环境造成严重的污染,因此准确测定冷轧乳化液废水中重金属含量对其后续处理方案的选择具有指导作用。采用硝酸、盐酸、过氧化氢酸溶体系并使用微波消解法消解样品,可有效消解有机物质且不会造成待测元素的损失。选择Fe 259.940 nm、Zn 209.994 nm、Cu 324.754 nm、Ni 231.604 nm、Pb 220.353 nm、Cd 226.502 nm作为分析谱线,建立了电感耦合等离子体原子发射光谱法(ICP-AES)测定冷轧乳化液废水中铁、锌、铜、镍、铅、镉的方法。讨论了样品前处理方式、消解酸及其用量,研究了共存元素对铁、锌、铜、镍、铅、镉测定的影响。结果表明:在仪器的最优工作条件下,各元素校准曲线的线性相关系数均不小于0.999 6;铁、锌、铜、镍、铅、镉的检出限分别为0.004 9、0.002 1、0.002 0、0.001 2、0.001 4和0.001 0 mg/L。对冷轧乳化液废水中铁、锌、铜、镍、铅、镉含量进行测定,各元素测定结果的相对标准偏差(RSD,n=7)为0.32%~2.8%,加标回收率为96%~104%。 相似文献
5.
建立了铅试金富集—微波消解—电感耦合等离子体原子发射光谱仪测定合质金中铱的分析方法,确定了样品溶解方法和测试条件。该方法精密度和准确度的验证实验结果表明,测定铱的相对标准偏差(RSD)小于4.90%,加入标准物质回收率为97.44%~99.62%,分析结果准确可靠。 相似文献
6.
样品用盐酸、过氧化氢溶解,在少量硫酸存在下,以盐酸和氢溴酸挥锡,电感耦合等离子体原子发射光谱法测定铅和镉的含量。优化了仪器的工作参数,对溶样酸和锡基体等影响因素进行了试验。本法测铅和镉的线性范围分别为0.50~5.00 μg/mL和0.050~0.50 μg/mL ,检出限分别为13.2 μg/L和0.9 μg/L,样品测定结果的相对标准偏差(n=6)均小于4 %,用标准加入法测得回收率分别为97 %~108 %和90 %~96 %。 相似文献
7.
试样用硝酸、盐酸溶解,用电感耦合等离子体原子发射光谱(ICP-AES)法测定铅、镉;用盐酸、硝酸、硫酸溶解,在盐酸介质中以四氯化碳萃取去除铝,然后用ICP-AES法测定砷。测定时选择283.306 nm,226.502 nm,197.262 nm分别作为铅、镉、砷的分析线,基体铝对铅、镉测定的影响采用基体匹配方法克服。对于5μg/mL的As,Pb,Cd,20倍量的Zn,Si,Mn,V,Ti,Mg无干扰。铅、砷的检出限均为0.01μg/mL,镉的检出限为0.001μg/mL。用本法测定铝箔样品中铅、镉、砷, 相似文献
8.
9.
准确测定铁矿石中硫化铁对于铁矿石的物相分析具有重要意义。目前,铁矿石中硫化铁的前处理方法以系统分析法为主,虽然该方法发展较为成熟,但是存在着步骤繁琐、分离不彻底、硫化铁易损失等问题,易导致测定结果不准确。通过不同溶样方法的对比试验,确定了采用饱和溴水-高锰酸钾混合溶液直接浸取铁矿石的方法以充分浸取硫化铁;通过不同定容方式的对比试验,选择氟化铵-盐酸混合溶液作为提取介质,以最大程度抑制铁的水解,经电感耦合等离子体原子发射光谱法(ICP-AES)测定,得到铁矿石中硫化铁(以铁计,下同)的含量。方法中校准曲线的线性相关系数为0.999 9;硫化铁的检出限为3μg/g。按照实验方法测定铁矿石物相成分分析标准物质中硫化铁,结果的相对标准偏差(RSD,n=8)为1.9%~3.5%,相对误差为1.3%~2.5%。实验方法用于测定3个铁矿石实际样品中硫化铁,结果的RSD(n=5)为0.68%~3.0%。方法适用于铁矿石中0.04%~8%(质量分数)硫化铁的测定。 相似文献
10.
通过最佳微波消解条件、分析谱线和内标元素的选择,基体及共存元素间光谱干扰的研究,检测限的测定以及样品分析,建立了微波消解-电感耦合等离子体原子发射光谱法测定硼铁中硼的分析方法。测定时可选择182.641,208.959,249.773 nm 3条谱线作为硼的分析线。当选择前两条谱线时,铁的质量浓度在0.5~2 mg/mL范围对测定没有影响;但是当铁的质量浓度在2 mg/mL时,由于硼的分析线(249.773 nm)受铁谱线(249.782 nm)干扰,对测定产生影响,这种影响可通过基体匹配方法消除。与硼共 相似文献
11.
使用盐酸-氢氟酸并采用微波消解处理炉渣样品,选择B 182.577nm或B 249.678nm为分析线,在基体没有明显干扰的情况下,选择自动匹配法(FITTED)进行谱线校正并扣除相应背景,采用高纯物质进行基体匹配后,配制标准溶液系列,建立了使用电感耦合等离子体原子发射光谱法(ICP-AES)测定炉渣系列样品中硼元素含量的方法。硼的质量分数为0.0006%~0.25%(B 182.577nm)或0.0008%~0.25%(B 249.678nm)范围内校准曲线呈线性,线性相关系数r均不小于0.9998;方法中硼的检出限小于0.0002%。方法应用于炉渣样品中硼的测定,结果的相对标准偏差(RSD,n=6)小于3%,加标回收率为96%~102%,与电感耦合等离子体质谱法(ICP-MS)进行比较,测定结果较为满意。 相似文献
12.
13.
通过微波加热,以8 mL HCl 和2 mL HF溶解铁精矿,并在6 mol/L HCl介质中以甲基异丁基甲酮萃取Fe3+,从而消除了大量Fe对Zr、Hf的光谱干扰,以Zr 339.198{99} nm光谱线和Hf 277.336{121} nm光谱线为分析线,在选定的仪器参数下以电感耦合等离子体原子发射光谱法(ICP-AES)测定了溶液中的Zr和Hf。结果表明,Zr和Hf的原子发射光谱强度与Zr和Hf的含量(分别以ZrO2和HfO2质量浓度计)在0~8.0 μg/mL范围内呈良好的线性关系,校准曲线相关系数r均为0.999 9,方法检出限分别为0.025、0.024 μg/mL。方法用于铁精矿实际样品分析,Zr和Hf测得结果的相对标准偏差(RSD,n=6)分别为0.98%~2.7%和1.5%~4.9%,加标回收率为94%~108%和93%~110%。 相似文献
14.
15.
在锌的冶炼过程中,为了防止“烧板”现象,需要快速检测锌精矿中锑元素含量。采用硝酸、氢氟酸微波消解样品,消解结束后加入硫酸,用赶酸仪赶氢氟酸,选择Sb 217.582nm为分析谱线,采用基体匹配法绘制校准曲线消除基体效应的影响,使用电感耦合等离子体原子发射光谱法(ICP-AES)测定锌精矿中锑。锌质量浓度为0.05~200mg/L时与其发射强度呈线性关系,相关系数为0.9996;方法检出限为0.003%(质量分数,下同),测定下限为0.01%。按照实验方法测定锌精矿样品中锑,结果的相对标准偏差(RSD,n=12)为1.7%;加标回收率为98%~99%。按照实验方法测定4个锌精矿样品中锑,测定结果与氢化物发生-原子荧光光谱法或硫酸铈滴定法的测定结果一致。 相似文献
16.
采用微波消解-电感耦合等离子体原子发射光谱法(ICP-AES)对废电路板中18种主要金属元素进行定量分析。根据样品中被测元素的溶解特点,分别采用硝酸-氢氟酸-高氯酸-硼酸和王水-氢氟酸-高氯酸-硼酸两种混酸消解体系,在逐级升压的模式下进行样品的微波消解。通过基体匹配、元素分组进样、谱线优选的方法基本消除了测定过程中各元素之间可能存在的干扰。通过加标回收和与化学法、原子吸收法的对比分析,验证了方法的可靠性和准确性。实验表明,除基体铜外其他17种元素均能用本法测定。本方法检出限为1.1~24μg/L,用于废电 相似文献
17.
采用微波消解技术消解难处理的车用催化器样品,正交试验方法系统研究了消解条件,并在优化的测量条件下,用共沉淀富集分离方法排除了干扰元素的影响,从而建立了用电感耦合等离子体原子发射光谱法同时测定贵金属Pt、Pd和Rh的分析方法,实现了车用催化器中贵金属含量的快速测定。用本法测定了实际样品中的Pt、Pd和Rh,测定结果的相对标准偏差≤2.0%,加标回收率分别在91%~106%(Pt),90%~104%( Pd),94%~114% (Rh)之间。 相似文献
18.
使用盐酸-硝酸-氢氟酸以及微波消解的方式溶解镍基合金样品,选择Si 251.611 nm或Si 288.158 nm为分析线,Ar 420.069 nm为内标元素谱线,并用两点校正法扣除背景,采用基体匹配法配制标准溶液系列并绘制校准曲线以消除基体效应的影响,建立了使用电感耦合等离子体原子发射光谱法(ICP-AES)测定镍基合金中硅的分析方法。硅质量分数在0.008%~5.00%范围内(Si 251.611 nm),以及硅质量分数在0.015%~5.00%范围内(Si 288.158 nm)分别与其发射强度呈线性,相关系数均大于0.999;方法中硅的检出限不大于0.005%(质量分数)。方法应用于镍基合金样品中硅的测定,结果的相对标准偏差(RSD,n=10 )小于1%。按照实验方法测定镍基合金标准样品中硅,测定结果与认定值相吻合。 相似文献
19.
采用微波消解技术对样品进行预处理,确定了试剂的配比、微波消解功率、时间、压力、冷却温度等关键因素,建立了微波消解-电感耦合等离子体原子发射光谱法测定铁精粉中K,Na,Pb,Zn的方法。确定了仪器的最佳工作条件,选择了合适的分析谱线,采用基体匹配法和适宜的操作参数消除基体干扰及抑制背景干扰。方法测定各元素的检出限在0.000 3%~0.001 8%之间,各元素回归曲线相关系数均在0.999 1~0.999 9之间。方法用于样品的测定,相对标准偏差为0.33%~2.05%,回收率为98.5%~104%。 相似文献
20.
以氢氟酸,硝酸和过氧化氢作为消解试剂,采用逐步升温消解程序,建立了微波消解-电感耦合等离子体质谱法测定煤矸石中镉、铬、铅的方法。选择10 μg/L的Rh溶液作为内标溶液,以208Pb 、52Cr和114Cd分别作为铅、铬、镉的测定同位素,在选定的仪器工作参数下,应用建立的方法对不同地区的煤矸石样品进行测定,测定值与石墨炉原子吸收光谱法(GF-AAS)和电感耦合等离子体原子发射光谱法(ICP-AES)的测定值一致,相对标准偏差(RSD,n=5)均小于7%。方法检出限分别为:0.013 μg/g(镉)、2.00 μg/g(铬)、0.20 μg/g(铅)。 相似文献