首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Style Transfer Functions for Illustrative Volume Rendering   总被引:3,自引:0,他引:3  
Illustrative volume visualization frequently employs non-photorealistic rendering techniques to enhance important features or to suppress unwanted details. However, it is difficult to integrate multiple non-photorealistic rendering approaches into a single framework due to great differences in the individual methods and their parameters. In this paper, we present the concept of style transfer functions. Our approach enables flexible data-driven illumination which goes beyond using the transfer function to just assign colors and opacities. An image-based lighting model uses sphere maps to represent non-photorealistic rendering styles. Style transfer functions allow us to combine a multitude of different shading styles in a single rendering. We extend this concept with a technique for curvature-controlled style contours and an illustrative transparency model. Our implementation of the presented methods allows interactive generation of high-quality volumetric illustrations.  相似文献   

2.
Fast contact handling of soft articulated characters is a computationally challenging problem, in part due to complex interplay between skeletal and surface deformation. We present a fast, novel algorithm based on a layered representation for articulated bodies that enables physically-plausible simulation of animated characters with a high-resolution deformable skin in real time. Our algorithm gracefully captures the dynamic skeleton-skin interplay through a novel formulation of elastic deformation in the pose space of the skinned surface. The algorithm also overcomes the computational challenges by robustly decoupling skeleton and skin computations using careful approximations of Schur complements, and efficiently performing collision queries by exploiting the layered representation. With this approach, we can simultaneously handle large contact areas, produce rich surface deformations, and capture the collision response of a character/s skeleton.  相似文献   

3.
We present a design technique for colors with the purpose of lowering the energy consumption of the display device. Our approach is based on a screen space variant energy model. The result of our design is a set of distinguishable iso-lightness colors guided by perceptual principles. We present two variations of our approach. One is based on a set of discrete user-named (categorical) colors, which are analyzed according to their energy consumption. The second is based on the constrained continuous optimization of color energy in the perceptually uniform CIELAB color space. We quantitatively compare our two approaches with a traditional choice of colors, demonstrating that we typically save approximately 40 percent of the energy. The color sets are applied to examples from the 2D visualization of nominal data and volume rendering of 3D scalar fields.  相似文献   

4.
Material interface reconstruction (MIR) is the task of constructing boundary interfaces between regions of homogeneous material, while satisfying volume constraints, over a structured or unstructured spatial domain. In this paper, we present a discrete approach to MIR based upon optimizing the labeling of fractional volume elements within a discretization of the problem's original domain. We detail how to construct and initially label a discretization, and introduce a volume conservative swap move for optimization. Furthermore, we discuss methods for extracting and visualizing material interfaces from the discretization. Our technique has significant advantages over previous methods: we produce interfaces between multiple materials that are continuous across cell boundaries for time‐varying and static data in arbitrary dimension with bounded error.  相似文献   

5.
Textured Liquids based on the Marker Level Set   总被引:1,自引:0,他引:1  
In this work we propose a new Eulerian method for handling the dynamics of a liquid and its surface attributes (for example its color). Our approach is based on a new method for interface advection that we term the Marker Level Set (MLS). The MLS method uses surface markers and a level set for tracking the surface of the liquid, yielding more efficient and accurate results than popular methods like the Particle Level Set method (PLS). Another novelty is that the surface markers allow the MLS to handle non-diffusively surface texture advection, a rare capability in the realm of Eulerian simulation of liquids. We present several simulations of the dynamical evolution of liquids and their surface textures.  相似文献   

6.
Fiber tracking is a standard tool to estimate the course of major white matter tracts from diffusion tensor magnetic resonance imaging (DT‐MRI) data. In this work, we aim at supporting the visual analysis of classical streamlines from fiber tracking by integrating context from anatomical data, acquired by a T1‐weighted MRI measurement. To this end, we suggest a novel visualization metaphor, which is based on data‐driven deformation of geometry and has been inspired by a technique for anatomical fiber preparation known as Klingler dissection. We demonstrate that our method conveys the relation between streamlines and surrounding anatomical features more effectively than standard techniques like slice images and direct volume rendering. The method works automatically, but its GPU‐based implementation allows for additional, intuitive interaction.  相似文献   

7.
8.
Defocus Magnification   总被引:1,自引:0,他引:1  
A blurry background due to shallow depth of field is often desired for photographs such as portraits, but, unfortunately, small point-and-shoot cameras do not permit enough defocus because of the small diameter of their lenses. We present an image-processing technique that increases the defocus in an image to simulate the shallow depth of field of a lens with a larger aperture. Our technique estimates the spatially-varying amount of blur over the image, and then uses a simple image-based technique to increase defocus. We first estimate the size of the blur kernel at edges and then propagate this defocus measure over the image. Using our defocus map, we magnify the existing blurriness, which means that we blur blurry regions and keep sharp regions sharp. In contrast to more difficult problems such as depth from defocus, we do not require precise depth estimation and do not need to disambiguate textureless regions.  相似文献   

9.
Illustrative parallel coordinates (IPC) is a suite of artistic rendering techniques for augmenting and improving parallel coordinate (PC) visualizations. IPC techniques can be used to convey a large amount of information about a multidimensional dataset in a small area of the screen through the following approaches: (a) edge‐bundling through splines; (b) visualization of “branched ” clusters to reveal the distribution of the data; (c) opacity‐based hints to show cluster density; (d) opacity and shading effects to illustrate local line density on the parallel axes; and (e) silhouettes, shadows and halos to help the eye distinguish between overlapping clusters. Thus, the primary goal of this work is to convey as much information as possible in a manner that is aesthetically pleasing and easy to understand for non‐experts.  相似文献   

10.
Depth-of-Field Rendering by Pyramidal Image Processing   总被引:1,自引:0,他引:1  
We present an image-based algorithm for interactive rendering depth-of-field effects in images with depth maps. While previously published methods for interactive depth-of-field rendering suffer from various rendering artifacts such as color bleeding and sharpened or darkened silhouettes, our algorithm achieves a significantly improved image quality by employing recently proposed GPU-based pyramid methods for image blurring and pixel disocclusion. Due to the same reason, our algorithm offers an interactive rendering performance on modern GPUs and is suitable for real-time rendering for small circles of confusion. We validate the image quality provided by our algorithm by side-by-side comparisons with results obtained by distributed ray tracing.  相似文献   

11.
For surgical planning, the exploration of 3D visualizations and 2D slice views is essential. However, the generation of visualizations which support the specific treatment decisions is very tedious. Therefore, the reuse of once designed visualizations for similar cases can strongly accelerate the process of surgical planning. We present a new technique that enables the easy reuse of both medical visualization types: 3D scenes and 2D slice views. We introduce the keystates as a concept to describe the state of a visualization in a general manner. They can be easily applied to new datasets to create similar visualizations. Keystates can be shared between surgeons of one specialization to reproduce and document the planning process for collaborative work. Furthermore, animations can support the surgeon on individual exploration and are also useful in collaborative environments, where complex issues must be presented in a short time. Therefore, we provide a framework, where animations can be visually designed by surgeons during their exploration process without any programming or authoring skills. We discuss several transitions between different visualizations and present an application from clinical routine.  相似文献   

12.
We present a novel and effective method for modeling a developable surface to simulate paper bending in interactive and animation applications. The method exploits the representation of a developable surface as the envelope of rectifying planes of a curve in 3D, which is therefore necessarily a geodesic on the surface. We manipulate the geodesic to provide intuitive shape control for modeling paper bending. Our method ensures a natural continuous isometric deformation from a piece of bent paper to its flat state without any stretching. Test examples show that the new scheme is fast, accurate, and easy to use, thus providing an effective approach to interactive paper bending. We also show how to handle non-convex piecewise smooth developable surfaces.  相似文献   

13.
Recent advances in physically‐based simulations have made it possible to generate realistic animations. However, in the case of solid‐fluid coupling, wetting effects have rarely been noticed despite their visual importance especially in interactions between fluids and granular materials. This paper presents a simple particle‐based method to model the physical mechanism of wetness propagating through granular materials; Fluid particles are absorbed in the spaces between the granular particles and these wetted granular particles then stick together due to liquid bridges that are caused by surface tension and which will subsequently disappear when over‐wetting occurs. Our method can handle these phenomena by introducing a wetness value for each granular particle and by integrating those aspects of behavior that are dependent on wetness into the simulation framework. Using this method, a GPU‐based simulator can achieve highly dynamic animations that include wetting effects in real time.  相似文献   

14.
The quest for the ideal flow visualization reveals two major challenges: interactivity and accuracy. Interactivity stands for explorative capabilities and real‐time control. Accuracy is a prerequisite for every professional visualization in order to provide a reliable base for analysis of a data set. Geometric flow visualization has a long tradition and comes in very different flavors. Among these, stream, path and streak lines are known to be very useful for both 2D and 3D flows. Despite their importance in practice, appropriate algorithms suited for contemporary hardware are rare. In particular, the adaptive construction of the different line types is not sufficiently studied. This study provides a profound representation and discussion of stream, path and streak lines. Two algorithms are proposed for efficiently and accurately generating these lines using modern graphics hardware. Each includes a scheme for adaptive time‐stepping. The adaptivity for stream and path lines is achieved through a new processing idea we call ‘selective transform feedback’. The adaptivity for streak lines combines adaptive time‐stepping and a geometric refinement of the curve itself. Our visualization is applied, among others, to a data set representing a simulated typhoon. The storage as a set of 3D textures requires special attention. Both algorithms explicitly support this storage, as well as the use of precomputed adaptivity information.  相似文献   

15.
We present an unbiased method for generating caustic lighting using importance sampled Path Tracing with Caustic Forecasting. Our technique is part of a straightforward rendering scheme which extends the Illumination by Weak Singularities method to allow for fully unbiased global illumination with rapid convergence. A photon shooting preprocess, similar to that used in Photon Mapping, generates photons that interact with specular geometry. These photons are then clustered, effectively dividing the scene into regions which will contribute similar amounts of caustic lighting to the image. Finally, the photons are stored into spatial data structures associated with each cluster, and the clusters themselves are organized into a spatial data structure for fast searching. During rendering we use clusters to decide the caustic energy importance of a region, and use the local photons to aid in importance sampling, effectively reducing the number of samples required to capture caustic lighting.  相似文献   

16.
This paper presents a procedural approach to generate furniture arrangements for large virtual indoor scenes. The interiors of buildings in 3D city scenes are often omitted. Our solution creates rich furniture arrangements for all rooms of complex buildings and even for entire cities. The key idea is to only furnish the rooms in the vicinity of the viewer while the user explores a building in real time. In order to compute the object layout we introduce an agent‐based solution and demonstrate the flexibility and effectiveness of the agent approach. Furthermore, we describe advanced features of the system, like procedural furniture geometry, persistent room layouts, and styles for high‐level control.  相似文献   

17.
Vector fields are a common concept for the representation of many different kinds of flow phenomena in science and engineering. Methods based on vector field topology are known for their convenience for visualizing and analysing steady flows, but a counterpart for unsteady flows is still missing. However, a lot of good and relevant work aiming at such a solution is available. We give an overview of previous research leading towards topology‐based and topology‐inspired visualization of unsteady flow, pointing out the different approaches and methodologies involved as well as their relation to each other, taking classical (i.e. steady) vector field topology as our starting point. Particularly, we focus on Lagrangian methods, space–time domain approaches, local methods and stochastic and multifield approaches. Furthermore, we illustrate our review with practical examples for the different approaches.  相似文献   

18.
Studying transformation in a chemical system by considering its energy as a function of coordinates of the system's components provides insight and changes our understanding of this process. Currently, a lack of effective visualization techniques for high‐dimensional energy functions limits chemists to plot energy with respect to one or two coordinates at a time. In some complex systems, developing a comprehensive understanding requires new visualization techniques that show relationships between all coordinates at the same time. We propose a new visualization technique that combines concepts from topological analysis, multi‐dimensional scaling, and graph layout to enable the analysis of energy functions for a wide range of molecular structures. We demonstrate our technique by studying the energy function of a dimer of formic and acetic acids and a LTA zeolite structure, in which we consider diffusion of methane.  相似文献   

19.
Flow visualization is recognized as an essential tool for many scientific research fields and different visualization approaches are proposed. Several studies are also conducted to evaluate their effectiveness but these studies rarely examine the performance from the perspective of visual perception. In this paper, we aim at exploring how users’ visual perception is influenced by different 2D flow visualization methods. An eye tracker is used to analyze users’ visual behaviors when they perform the free viewing, advection prediction, flow feature detection, and flow feature identification tasks on the flow field images generated by different visualizations methods. We evaluate the illustration capability of five representative visualization algorithms. Our results show that the eye‐tracking‐based evaluation provides more insights to quantitatively analyze the effectiveness of these visualization methods.  相似文献   

20.
In the visualization of flow simulation data, feature detectors often tend to result in overly rich response, making some sort of filtering or simplification necessary to convey meaningful images. In this paper we present an approach that builds upon a decomposition of the flow field according to dynamical importance of different scales of motion energy. Focusing on the high‐energy scales leads to a reduction of the flow field while retaining the underlying physical process. The presented method acknowledges the intrinsic structures of the flow according to its energy and therefore allows to focus on the energetically most interesting aspects of the flow. Our analysis shows that this approach can be used for methods based on both local feature extraction and particle integration and we provide a discussion of the error caused by the approximation. Finally, we illustrate the use of the proposed approach for both a local and a global feature detector and in the context of numerical flow simulations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号