首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
本文研究了不同挤压比和挤压温度(挤压桶温度)对AZ63M镁合金晶粒尺寸和力学性能的影响,探索了挤压态AZ63M镁合金最优时效处理工艺和热加工工艺。实验挤压比选用9、32、41、81,挤压温度为200℃、250℃、300℃。热处理采用固溶+时效(T6)和挤压后时效(T5)处理两种方式,绘制了在变形温度为300℃~450℃和应变速率为5×10-2s-1~5×10-4s-1的热加工图。结果表明:随着挤压温度降低从300℃到200℃,合金晶粒尺寸从31μm减小到14μm,抗拉强度从225MPa增加到368MPa,伸长率从13.6%增加至17.3%。随着挤压比增加从9到81,合金晶粒尺寸从24μm减小至8μm,抗拉强度从277MPa增加至376MPa,伸长率从15.3%增加至16.1%。挤压温度为250℃,挤压比为32,挤压速率为60mm/min挤压、T6(420℃×8h+210℃×18h)处理后,AZ63M镁合金抗拉强度与挤压态AZ63M(330MPa)对比提高了18%,达到390MPa,伸长率降低了6%,和铸态AZ63M相比,挤压态AZ63M的热加工区域增大,最优热加工区域为温度400℃~450℃,应变速率5×10-4s-1~1.5×10-3s-1。  相似文献   

2.
通过热压缩实验,研究挤压态AZ80镁合金在变形温度为250-450℃,应变速率为0.001-10 s-1条件下的热变形行为。采用经过温升修正的流变应力计算该合金的Zener-Hollomon参数(Z参数)。结果表明,挤压态AZ80镁合金适宜的变形条件为应变速率0.1 s-1、变形温度350-400℃。另外,讨论了显微组织演化与Z参数之间的关系。在高温及低应变速率(低Z参数)时,合金发生了完全再结晶并产生了大的再结晶晶粒。综合考虑加工图和显微组织,变形温度400℃、应变速率0.1 s-1是合金适宜的热变形条件。  相似文献   

3.
研究了挤压态AZ31镁合金在压缩过程中的组织变化及其演变机制,探讨了孪生对加工硬化的影响。结果表明,当应变量小于4%时,孪晶含量随应变增大而增多;此后,随应变增加,孪晶含量反而逐渐减少,显微组织分析表明发生了退孪生现象。但织构分析表明,镁合金在压缩过程中并没有发生退孪生。孪晶长大与合并模型被用于解释组织分析显示的孪晶产生和消失现象。在挤压态镁合金的压缩过程中,孪晶的长大与合并导致基体几乎被消耗完毕,大部分基体转变成了孪晶组织,孪晶合并成片,以至于在显微组织观察中产生了孪生先产生后消失的假象。研究还表明,在孪生过程中镁合金的晶体取向发生86.3°的转变,使得镁合金从软取向变成了硬取向,这种取向的转变是镁合金压缩变形过程加工硬化的主要原因。  相似文献   

4.
通过热模拟压缩试验研究了挤压态AZ41M镁合金在应变速率为0.005~1s-1、温度为300~450℃条件下的热变形行为.利用光学显微镜分析了合金热变形过程中的组织演变.结果表明:挤压态AZ41M镁合金热变形过程中,真应力应变曲线表现出典型的单峰动态再结晶(DRX)特征,合金具有比较高的温度和应变速率敏感性;合金热变形...  相似文献   

5.
在不同温度下,采用双向双通道变通径挤压(DDE)对AZ31镁合金进行挤压,研究该工艺对其组织、力学性能、拉压不对称性和断裂行为的影响。结果表明:与均匀态AZ31镁合金相比,挤压后所得试样的晶粒显著细化,力学性能和拉压不对称性得到改善;与采用等通道角挤压工艺多道次挤压试样的力学性能相比,该工艺具有一定的优势。此外,随着挤压温度的升高,晶粒尺寸逐渐增大,显微硬度、抗拉强度和压缩率逐渐降低。从250℃到450℃,晶粒尺寸从6μm增大到26μm,硬度值(HV)从67降低到56,抗压强度从400MPa降低到343MPa,压缩率从14.8%降低到9.7%。均匀态AZ31和挤压态AZ31的压缩断口均为穿晶断裂,前者断裂机理为脆性解理断裂,后者为韧脆结合型准解理断裂。  相似文献   

6.
挤压态AZ81镁合金的热压缩变形行为   总被引:1,自引:0,他引:1  
在温度为320~440℃、应变率为0.001~1s-1的变形条件下,采用Gleeble-1500热模拟机对挤压态AZ81镁合金的热压缩变形行为进行研究.结果表明挤压态AZ81镁合金的流变应力随变形温度的升高而降低,随应变率的升高而升高,且随应变的增加,流动应力很快达到峰值,然后逐渐降低并趋于稳定.为评价挤压态AZ81镁合金在热模压成形过程中流动应力,结合Arrhenius方程并引入Zener-Hollomon参数,对流动应力做出相应的修正,根据修正后的流动应力构建挤压态AZ81镁合金流变应力高温变形本构模型.模拟结果表明该模型的应力预测值与试验值吻合较好,计算精度较高,为后续的模压近/净终成形工艺参数的制定提供一定的理论参考.  相似文献   

7.
通过单道次轧制试验,研究了AZ31B挤压镁合金板材在温度为365℃和450℃时的轧制性能,其变形量范围为10%~60%,应变速率为2.1s-1~5.0s-1。通过光学显微镜和扫描电镜观察了轧制变形中的微观组织及其演变。结果表明,在变形的初始阶段,孪生为主要的变形机理和硬化机制。由孪生变形积聚的畸变能和非基滑移的启动,导致了动态再结晶的形核与长大,增大变形速率可以抑制晶粒长大,使平均晶粒尺寸细化到7μm~10μm。365℃温轧制变形使板材晶粒明显细化,温度较高时,晶粒细化作用有限。在同一变形量下,随着轧制温度的升高,板材的晶粒呈长大趋势,在365℃轧制温度下,随着道次变形量的加大,细晶百分含量随之迅速增加。当轧制温度提高到450℃时,晶粒细化有限,晶粒尺寸保持在20μm以上。  相似文献   

8.
研究了热挤压态Mg-3Al-3Zn-1Ti-0.6RE镁合金的高温拉伸变形行为和微观组织演变,分析了该合金在温度为623K-723K,应变速率为1x10-4s-1-1x10-2s-1条件下的流变应力随温度和应变速率的变化,归纳了温度、应变速率与流变应力的关系。研究结果表明:温度和应变速率是影响流变应力的主要因素,在变形过程中,流变应力随变形温度的升高和应变速率的降低而减小。在本实验条件下,该合金的变形本构方程可用双曲正弦函数 来描述,应力指数n=3.286,激活能Q=238kJ/mol,表明该合金的高温塑性变形机制主要是位错滑移和攀移。  相似文献   

9.
挤压态AZ31镁合金的疲劳行为研究   总被引:2,自引:1,他引:2  
通过外加总应变幅控制的疲劳试验和断口形貌分析,确定了挤压态AZ31镁合金的循环应力响应行为、循环变形行为、疲劳寿命行为和疲劳断裂机制。结果表明,在外加总应变幅控制的疲劳加载条件下,挤压态AZ31镁合金呈现明显的循环应变硬化现象和拉-压不对称循环变形现象,其弹性应变幅、塑性应变幅与断裂时的载荷反向周次之间的关系可分别用Basquin和Coffin-Manson公式来描述,断口上的疲劳裂纹的萌生和扩展均以穿晶模式进行。  相似文献   

10.
根据X射线衍射图谱绘制了晶面反极图,研究了拉伸变形对挤压态AZ31镁合金织构的影响.结果表明,挤压态AZ31镁合金具有明显的(0002)基面织构,且存在C轴与挤压方向呈16°~21°角分布的倾斜基面织构.拉伸变形使基面织构弱化,(1010)柱面沿C轴发生了45°角的转动.  相似文献   

11.
采用Gleeble-1500热模拟试验机对AZ61镁合金在变形温度为250~400℃、应变速率为0.001~10.000s-1条件下进行热压缩试验,研究了合金的热压缩变形行为及热加工图。结果表明,合金在高应变速率(10.000s-1)变形条件下具有较高的能量耗散率;该工艺范围内动态再结晶同时在初始晶界和孪晶上发生,合金具有较高的再结晶程度。因此,变形温度为250~400℃、应变速率为10.000s-1是较好的热加工工艺。  相似文献   

12.
梁立超  白彧  葛宜银 《铸造》2005,54(7):695-697
研究了挤压态AZ81镁合金的超塑变形行为及其变形机制.首先将AZ81镁合金进行热挤压处理,然后在不同的温度和初始应变速率下进行了超塑性拉伸试验,计算了应变速率敏感性指数.通过观察和比较不同温度下材料的稳态流变现象,分析了超塑变形机制随着温度的上升而发生变化的原因.挤压态AZ81的超塑性变形机制是晶界滑移,而孔洞的形核与断裂是变形的协调机制.  相似文献   

13.
对模压态AZ61镁合金在室温~150℃条件下的的力学性能及变形机制进行研究.结果表明:在拉伸速度1 mm/min,随着拉伸温度的升高,拉伸后的显微组织中晶界逐渐软化,动态再结晶有减少趋势,并伴随有孪晶出现,抗拉强度及屈服强度显著下降,而其伸长率在低温拉伸中的变化幅度有限;同时在90 ~ 130℃发生了动态应变时效;对拉伸断口的观察分析表明,随着温度的逐渐升高(≤150℃),其断裂机制由韧脆混合断裂逐渐变为韧性断裂.  相似文献   

14.
针对AZ91D镁合金,采用Gleeble1500D热模拟实验机对原始铸态试样在不同温度和应变速率下的高温压缩变形行为进行了实验研究.结果表明,AZ91D镁合金在压缩温度为200℃时,随着应变速率增大,应力升高加快;压缩温度为300~400 ℃、应变速率为0.001~1 s-1时,材料呈现出稳态流变的特性;当应变速率提高到5 s-1时,未出现稳态流变现象.建立了AZ91D镁合金低、高温压缩的变形力学模型,其结果可为镁合金的塑性成形工艺的制订提供理论依据.  相似文献   

15.
采用拉伸至断裂实验,在温度为300、350、400和450℃,应变率分别为10~(-2)和10~(-3)S~(-1)条件下,研究AZ80镁合金的拉伸行为。并采用变化应变率拉伸实验在5×10弓至2×10~(-2)S~(-1)的应变率范围内进行变形机制研究。结果表明:该材料在400和450℃下具有超过100%的高伸长率,其应力指数为4.29,变形激活能为149.60kJ/mol。初始细晶粒在均匀变形区的高温变形中较为稳定,其变形机制为晶界滑移和位错攀移蠕变的竞争机制。基于该机制所建立的数学模型的模拟结果与实验数据吻合。  相似文献   

16.
为改善镁合金塑性变形能力,在AZ31镁合金的拉伸变形中引入高密度脉冲电流,研究了脉冲电流对合金显微组织及拉伸变形行为的影响规律,并探讨了其机理。结果表明,与未加脉冲电流拉伸相比,施加脉冲电流的AZ31镁合金的变形抗力显著降低,并且随脉冲电流密度的提高,其变形抗力下降的幅度增大。施加脉冲电流的合金在拉伸过程中发生了明显的动态再结晶,再结晶晶粒细小均匀,从而降低了合金的变形抗力。这是由于脉冲电流可以提高原子通量、促进原子扩散、加快小角亚晶向大角度亚晶转变,从而促进了合金的动态再结晶。另一方面,脉冲电流产生的电效应能够改变位错的激活能,使其容易克服滑移面上的障碍,增加位错可动性,从而提高合金塑性变形能力。  相似文献   

17.
为研究热处理和热成形工艺对铸态镁合金的力学性能影响,采用不同保温时间对铸态镁合金AZ61M进行固溶处理,利用金相显微镜和显微硬度计研究不同固溶时间对镁合金组织和力学性能的影响,利用万能试验机对固溶后镁合金进行3道次多向挤压。结果表明:经过6 h固溶处理后,铸态镁合金AZ61M中的第二相β充分溶入基体,抗拉强度从64提高到244 MPa,硬度略有下降。固溶时间从6 h延长到10 h对提高力学性能作用不大,且延长保温时间使晶粒有长大粗化倾向。将固溶10 h的镁合金进行3道次多向挤压后,晶粒尺寸从200减小至100μm以下,抗拉强度和抗压强度相比未挤压前分别提高19%和44%。在单向拉伸/压缩过程中,裂纹扩展途径显示为穿晶断裂,且压断断口比拉断断口平滑。  相似文献   

18.
采用Gleeble-3500热模拟实验机,对AZ31镁合金在变形温度为523~723 K、应变速率为0.01~10.00 s-1、最大变形程度为60%的条件下进行热压缩实验.结果表明,流变应力随应变的增加而显著增大,到达峰值后逐渐降低并趋于稳态,变形呈明显的动态再结晶特征.变形温度和应变速率对流变应力影响显著,本文采用包含Arrheniues项的本构方程来描述AZ31镁合金的高温变形行为.  相似文献   

19.
为了获得高性能镁合金板材,采用正向热挤压将铸态AZ31镁合金坯料挤压成2 mm厚的板材,研究了其显微组织演变及力学性能等。结果表明:铸态AZ31镁合金坯料挤压成板材后可以获得均匀细小的再结晶晶粒组织,其力学性能(屈服强度、抗拉强度、伸长率)大幅度提升。铸态AZ31镁合金坯料在400、450℃挤压成板材后,平均晶粒尺寸可由390μm分别细化至3.9、5.6μm。挤压后的AZ31镁合金板材展现出典型的(0001)基面织构,大部分晶粒的c轴垂直于板材表面。铸态AZ31镁合金的力学性能较差,而AZ31镁合金挤压板材在三个拉伸方向上均展现出优越的力学性能。随挤压温度的升高,AZ31镁合金挤压板材晶粒长大且显微组织不均匀,综合力学性能也有所下降。  相似文献   

20.
在Gleeble-1500热模拟机上对铸态AZ80镁合金在应变速率为0.005s-1~5s-1、变形温度为200℃~400℃条件下的高温热压缩变形行为进行了研究。结果表明,材料真应力-真应变曲线呈现动态再结晶特征。在温度T≥250℃,试样流变应力行为对应变速率敏感;在低温下T=200℃,应变速率对流变应力影响不大。高温下试样流变应力符合幂指数函数关系,应力指数n为6,热变形激活能Q为220kJ/mol。在高应变速率条件下,试样在变形中的温升是应变量的函数。实验中,Zener-Hollomon参数值大的试样温升明显,而Zener-Hollomon值小的试样变形温度基本保持不变。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号