首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
本文分别以30 μm、50 μm、100 μm和160 μm四种直径的紫铜纤维毡与紫铜基板构成的多孔材料为研究对象,针对紫铜纤维毡孔隙度分别为90%、80%和75%下,四种直径的纤维多孔材料池沸腾换热性能进行了检测,并与紫铜基板池沸腾换热性能进行对比。研究结果表明:紫铜纤维多孔材料具有良好的强化池沸腾换热性能,当过热度ΔT <20oC时,紫铜纤维多孔材料换热性能是紫铜基板换热性能的2~5倍;当紫铜纤维毡孔隙度为90%时,多孔材料的换热性能随着纤维直径的减小而增强;当纤维直径为160μm时,多孔材料的换热性能随着纤维毡孔隙度的减小而增强。紫铜纤维多孔材料池沸腾换热性能受多孔材料内部汽化核心数目、汽泡溢出阻力和毛细吸力等多种因素的影响。因此,在不同的工作条件下,纤维多孔材料具有不同的最佳孔结构参数。  相似文献   

2.
以85%和90%两种孔隙度的不锈钢纤维多孔表面为研究对象,针对8、12、20、28μm的4种不同丝径样品的池沸腾传热性能进行分析。结果发现:当测试样品的孔隙度、厚度等参数一致时,不锈钢纤维丝径小于20μm,不锈钢纤维多孔表面的传热性能随丝径的增大而增强。影响纤维多孔表面池沸腾换热的因素很多,因此其传热性能并不是随纤维丝径的增大而增强,当纤维丝径大于20μm,其传热性能呈减弱趋势。  相似文献   

3.
本文设计两种不锈钢纤维多孔材料的铺制方法:平行铺制和直立铺制,通过控制铺制方法、长径比和烧结工艺得到具有不同孔结构的不锈钢纤维多孔材料,对具有不同孔结构的不锈钢纤维多孔材料的吸声性能进行分析,结果表明,长径比为5000的不锈钢纤维多孔材料的性价比最高;当材料厚度≤15mm时,平行铺制的纤维多孔材料较直立铺制的吸声性能好;当材料厚度>15mm时,铺制方法的影响不显著;烧结结点数量的多少对不锈钢纤维多孔材料吸声性能贡献不大。  相似文献   

4.
不锈钢纤维烧结多孔材料孔结构分形分析   总被引:1,自引:0,他引:1  
借助分形几何理论研究了不锈钢纤维烧结多孔材料孔结构的分形特征.通过对不锈钢纤维烧结多孔材料的扫描图像进行数字化处理,并利用盒维法计算分形维数,研究了盒维法计算分形维数的影响因素.确定出分形维数与多孔材料孔隙度之间的定量关系,同时说明了分形维数的物理意义.  相似文献   

5.
孔结构是影响金属纤维多孔材料各项性能的关键因素之一,为此研究了孔结构对其性能的影响规律。采用气流铺毡法和烧结技术制备了Fe Cr Al纤维多孔材料,利用SEM观察其微观组织,同时测试了其拉伸强度、透气性和吸声系数(声强为90~140 d B,频率为1000~3000 Hz)。利用自主研发的分形软件计算了孔结构的分形维数。另外,研究了孔结构对多孔材料拉伸强度、吸声系数和透气性的影响规律,建立了拉伸强度、透气性与分形维数之间的本构关系。研究表明,随着分形维数的增加,抗拉伸强度呈线性下降,而透气性显著增大;在相同的声强和频率下,吸声系数随着分形维数的增加而逐渐降低。  相似文献   

6.
纤维多孔材料梯度结构的吸声性能研究   总被引:1,自引:3,他引:1  
为了提高纤维多孔材料的低频吸声性能,并解决材料在高频段吸声性能的起伏问题,将2~3层不同孔隙性能的不锈钢纤维材料以不同的方式组合成梯度结构,研究了纤维多孔材料梯度结构的吸声性能.结果表明:梯度多孔吸声结构可有效改善低频吸声性能.不同孔隙度的排布方式对梯度结构的吸声性能有显著影响.按照孔隙度从高到低排布有利于吸声性能的提高.在此前提下,孔隙度越高、厚度越大,梯度结构的吸声性能越好.  相似文献   

7.
本文以8μm不锈钢纤维毛毡为原料,利用体积称重法和高温烧结工艺制备出具有不同孔隙率、平均孔径和厚度的不锈钢纤维多孔材料。通过结构优化设计了正梯度结构、反梯度结构和薄膜复合结构,对三种结构进行了隔声性能的测试,分别研究了三种结构的隔声特性。隔声结果表明,不锈钢纤维多孔材料具有一定的隔声性能,厚度为20mm,孔隙率为85%,在50~6400Hz频率范围内,不锈钢纤维多孔材料的平均隔声量为18.92 dB;其孔隙率越低,平均孔径越小,厚度越厚,材料的隔声性能越好;设计的正梯度和反梯度结构的隔声性能比单层不锈钢纤维多孔材料的隔声性能差;添加金属薄膜的不锈钢纤维多孔复合材料在中高频处的隔声性能有很大提高,厚度为20mm,平均隔声量达27.86dB,最高处提高16.96dB。  相似文献   

8.
本文重点研究了纤维缠绕角、烧结制度、纤维直径对制品的最大孔径和机械性能的影响以及纤维层厚度对纤维层中的最大孔径的影响。研究结果表明:影响纤维层与致密芯杆交界面结合强度的最主要因素是烧结制度和缠绕角,即结合强度随烧结温度的提高,保温时间的延长以及缠绕角的增加而增加;缠绕角和纤维直径是控制纤维层最大孔径的关键因素,即缠绕角越小,纤维越粗,则孔径越大;钛纤维多孔棒的抗弯强度和抗拉强度主要取决于致密芯杆的强度。  相似文献   

9.
不锈钢纤维多孔材料的吸声性能   总被引:7,自引:1,他引:7  
采用不锈钢纤维为原料制备不同孔隙性能的纤维多孔材料,采用驻波管法检测该纤维多孔材料的空气声吸收系数,研究材料的孔隙度、纤维直径以及材料厚度等参数对吸声性能的影响,同时研究在材料背后设置空气层以及空气层厚度对材料吸声性能的影响关系。结果表明:实验采用的不锈钢纤维多孔材料具有较好的吸声性能,材料的孔隙度越高、厚度越大、纤维越细,材料的吸声性能越好,在材料背后设置空气层可显著改善其低频吸声性能,材料背后的空气层厚度越大,材料的低频吸声性能越好。  相似文献   

10.
利用离心沉积技术在多孔管内壁上制备了不同粒度的镍和不锈钢多孔梯度层,研究不同粒度的粉末以及梯度层厚度对梯度层孔隙性能的影响.结果表明,梯度层透气系数与中流量孔在梯度层粒度为5 μm以下急剧减小,当梯度层粉末粒度为13.6μm、梯度层厚度小于20 μm时,梯度层厚度对其孔径分布与透气系数影响不大;当梯度层粉末粒度为2.7μm时,梯度层的最佳匹配厚度是50μm.  相似文献   

11.
纳米孔结构金属多孔材料研究进展   总被引:3,自引:0,他引:3  
纳米孔结构金属多孔材料(以下简称金属纳米多孔材料)是近年来纳米技术及多孔材料科学领域引人注目的研究对象.本文综述了近年来金属纳米多孔材料的制备方法(粉末烧结法、脱合金法、胶晶模板法、斜入射沉积法等)、表征技术、应用现状以及最新的研究成果.指出了金属纳米多孔材料研究进程中存在的主要问题、发展前景及今后的研究方向.  相似文献   

12.
孔结构是影响金属多孔材料本征特性与使用效果的关键因素之一.孔结构分解为孔形状、孔弯曲与粗糙度、孔隙度、孔径、比表面积等几个方面,介绍了常用的表征技术和国内外测量仪器的发展状况及技术参数,并分析了表征技术中存在的问题.  相似文献   

13.
以316L不锈钢纤维毡为原料,采用不同的烧结工艺,制备出孔隙度为70%~95%的不锈钢纤维多孔材料,研究了纤维丝径、孔隙度、烧结温度和保温时间对其拉伸性能的影响。研究表明,不锈钢纤维多孔材料的拉伸过程主要分为3个阶段:弹性阶段、塑性变形阶段和断裂阶段。纤维越细,多孔材料的抗拉强度越高;随着孔隙度的增加,多孔材料的抗拉强度逐渐降低;提高烧结温度或延长保温时间,均会提高多孔材料的抗拉强度。  相似文献   

14.
以不锈钢纤维毡为原料,制备具有不同孔隙结构的多孔材料.对不锈钢纤维多孔材料的阻尼性能进行测试,分析孔结构参数与阻尼系数的影响规律.结果表明:孔隙度越低,丝径越细,材料的阻尼减振性能越好;延长烧结工艺中的保温时间,可以提高材料的阻尼性能.烧结结点数量对阻尼性能的影响不大.  相似文献   

15.
立方孔拓扑结构对多孔钛力学性能的影响   总被引:1,自引:1,他引:0  
采用钛网层叠烧结的方法制备出规则排列与错孔排列具备不同空间拓扑结构的多孔钛。采用扫描电镜观察多孔钛的微观结构,利用具有双差动位移传感器采集变形的Instron力学试验机测试样品压缩应力-应变曲线。通过压缩应力-应变曲线上弹性阶段中的曲线斜率求得其杨氏模量,以规定非比例压缩强度σ0.2为多孔材料的强度指标。经对比研究发现:2种不同的排列方式形成不同的空间拓扑结构。当方形孔错排时,弹性模量和屈服强度均呈现不同程度的下降,且弹性模量下降的幅度远远大于屈服强度下降的幅度。通过力学解析模型分析可知,挠度屈服和应力集中是力学性能下降的主要因素。  相似文献   

16.
我厂对于薄紫铜管或紫铜板的接头,一直采用H62黄铜焊条钎焊,加热用乙炔—氧焊炬。这种钎焊方法具有操作简便,劳动条件好,焊缝美观,强度高等优点。但是,有时遇到一批T_2铜材,按图纸要求检验,化学成分合格,却难以进行钎焊,钎焊时溶化的焊条,不能象通常那样容易润湿紫铜表面,焊完后焊缝接头强度不够,抗拉强度一般为15~19kg/mm~2,尤其是对焊缝进行弯曲试验时,都从焊条金属覆盖下的紫铜表面发生开裂。经金相分析,发现在紫铜中,以氧化亚铜(Cu_2O)形式存在的氧达到0.03%以上(GB471—64规定T_2含氧量≤0.06%)。因此我们对这个问题进行了分析研究。 1、钎焊时溶化的焊条为什么有的难  相似文献   

17.
造孔剂对SiC多孔预制块性能的影响   总被引:1,自引:1,他引:0  
采用无压浸渗法制备了SiCp/Al复合材料,研究造孔剂Fe(NO3)3·9H2O或Ni(NO3)2·6H2O对SiC预制块的微观形貌、气孔率和尺寸变化的影响,并对预制块的成分进行了分析.结果表明:以Fe(NO3)3·9H2O或Ni(NO3)2·6H2O作为造孔剂,均能制备SiC多孔预制块,但硝酸铁比硝酸镍使得预制块具有更好的微观组织,并成功制得了较致密的SiCp/Al复合材料;造孔剂分解生成的Fe2O3或NiO在SiC骨架内分布均匀,起到连接SiC粉体和减少SiC颗粒被氧化的作用;因SiC氧化导致陶瓷骨架约有5%左右的线膨胀,但坯体形状不发生改变,通过调整造孔剂硝酸镍、硝酸铁的含量,能获得孔隙率从0.42~0.49和0.38~0.41的SiC预制块.  相似文献   

18.
以Mn-Cu合金为前驱体合金,在酸溶液中腐蚀去合金化成功制备出孔径尺寸为纳米量级的纳米多孔铜。 研究了去合金化工艺参数中的酸溶液成分、腐蚀时间及腐蚀温度对最终纳米多孔铜孔结构及Mn的选择性腐蚀程度影响。结果表明:在0.1 mol/L HCl溶液中自由腐蚀去合金化后可得到孔结构均匀的纳米多孔铜;随着腐蚀时间的延长,孔结构有显著变化,腐蚀2 d所得纳米多孔铜样品的孔结构呈蜂窝状,腐蚀5 d所得样品的孔结构呈均匀的三维网络状结构,而后随着腐蚀时间的延长,孔壁逐渐粗化;随着腐蚀温度升高到60 ℃,样品中的残余Mn含量降低明显。通过调整去合金化工艺,实验所制备的纳米多孔铜孔结构呈均匀的三维网络状,孔隙率为57.7%,平均孔径尺寸约140 nm。  相似文献   

19.
以中空多孔聚丙烯腈(PAN)预氧化纤维为原料,固定炭化温度为800 ℃,时间为60 min时改变炭化升温速率制备了中空多孔炭纤维,借助于压汞法和SEM对其多孔结构进行表征,并对其影响规律进行了分析.结果表明,不同炭化升温速率下所得中空多孔炭纤维的孔径存在3个分布区域,分别为6~17 nm、90~430 nm和90 mm处附近,孔径分布的高峰在90~430 nm处.在此条件下,以5 ℃/min升温速率烧成纤维的孔隙率和比表面积分别为63.17%和88.672 m~2/g.SEM分析显示,随着炭化升温速率的升高,纤维的截面变形程度加剧,孔径增大.  相似文献   

20.
通过对铸态、热轧态、固溶态等不同初始组织状态的Cu4Mn6合金进行自腐蚀去合金化制备纳米多孔铜块体材料,研究了合金初始组织对去合金化过程、孔形成和孔微观结构的影响。采用XRD、SEM、EDS等分析了样品腐蚀前后的相组成、微观形貌和元素含量。结果表明,合金初始组织对去合金化过程和孔结构具有重要的影响,固溶态合金是制备成分纯净、结构均匀的纳米多孔金属的最佳前驱体。铸态和热轧态合金由于Cu元素分布不均,构成贫铜区和富铜区,不利于去合金化过程的进行,腐蚀后形成由纳米孔伴有微米孔的双级孔径结构,而固溶态合金由于其初始组织成分均匀,利于Mn元素的选择性溶解和Cu元素的重组,完成去合金化所需时间最短,Mn残留量最低,去合金化后可形成孔径均匀的三维连通纳米多孔结构。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号