首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
使用喷雾转化、煅烧和原位还原碳化技术制备了纳米晶WC-6Co复合粉末。通过XRD研究相组成发现,经过喷雾转化处理后粉末为无定形相、经煅烧后的粉末为WO3与Co3O4相、经还原碳化工艺后的物相是WC与Co相;由于Co对碳化过程的催化作用,将煅烧后的粉末置于氢气气氛中加热至900度还原碳化1个小时,即可将粉末碳化完全,制备出WC与Co相共存的纯净复合粉。文章还研究了还原碳化温度(700-900 ℃)对粉末相组成的影响,并通过SEM和HRTEM观察粉末形貌与微观组织。结果表明:制备的粉末具有球形结构,WC晶粒约0.36 μm,亚晶尺寸约为56 nm,说明WC晶粒是多晶体。同时发现粉末中的WC单颗粒被Co相互粘结在一起,且在WC与WC颗粒的接触部位发现存在烧结颈。文章还讨论了复合粉球形结构的形成过程和机理。  相似文献   

2.
以偏钨酸铵、可溶钴盐、有机碳为原料,经喷雾转化、煅烧、低温还原碳化制备WC-Co复合粉。对前驱体、复合粉物相组成、WC晶粒度、微观形貌、平均粒度及分布进行研究。结果表明:复合粉由WC和Co两相组成,WC晶粒度约为60 nm;前驱体粉末呈空壳球形结构,部分颗粒破裂;经煅烧后,形貌未发生明显变化;再经还原碳化处理,颗粒表面产生大量孔隙,形貌与前驱体相似,具有很好的形貌结构遗传特性;复合粉平均粒度比前驱体略有减小且粒度分布更窄;溶液浓度、给料速度越大,离心转速越小,则平均粒度越大;进气温度对粒度影响很小。  相似文献   

3.
以偏钨酸铵、可溶钴盐、可溶碳源为原料,经喷雾转化、煅烧、低温还原碳化制备超细晶WC-Co复合粉;采用同样成分配比及工艺,在煅烧后增加短时球磨工艺,制备出另一种超细晶WC-Co复合粉;分别以2种复合粉为原料,用放电等离子直接烧结制备超细WC-Co硬质合金。采用SEM、XRD、钴磁仪、矫顽磁力计、维氏硬度计等对复合粉形貌、合金显微组织与性能进行表征分析。结果表明,未短时球磨的粉末呈现出球形结构,WC颗粒被Co相粘结在一起,可观察到烧结颈并有异常长大晶粒,经过短时球磨工序制备的粉末为分散颗粒,2种粉末中Co相同时以fcc与hcp的结构存在,粉末WC晶粒尺寸约为0.26μm;未短时球磨的粉末制备的合金存在少量孔隙,致密度较低,有异常长大晶粒。短时球磨能有效提高粉末颗粒的分散性,减少烧结体中的显微组织缺陷,制备的合金综合性能得到提高。  相似文献   

4.
《硬质合金》2018,(5):305-314
以偏钨酸铵、醋酸钴及葡萄糖为原料,采用短流程工艺,通过喷雾转化法制备出含W、Co等元素的前驱体粉末、煅烧制备W、Co的氧化粉、最后以低温连续还原碳化法制备出WC晶粒尺寸约为260 nm的WC-Co复合粉。研究了短流程工艺3个关键步骤的参数变化对粉末形貌、粒径、氧含量、总碳和化合碳含量等特征的影响。结果表明,当溶液浓度为60%、进料速度为2 000 mL/min、离心转速为12 000 r/min时,制备的前驱体粉末粒度分布均匀,相互粘结的现象较少。温度为550℃、保温时间20 min时煅烧前驱体制备出的氧化物粉末粒度较均匀。当低温连续还原碳化温度为900℃、氢气流量为1.3 m3/h、保温时间为60 min时,可获得WC晶粒细小均匀、总碳和化合碳较为一致且接近于理论碳含量的WC-Co复合粉。  相似文献   

5.
机械与热综合活化法制备超细WC-Co粉末   总被引:1,自引:0,他引:1  
研究了WO3、Co3O4和石墨混合粉末经高能球磨活化后再分步进行还原和碳化反应制备超细WC-Co粉末的过程.结果表明:球磨30 h后,粉末粒径达到70~100 nm.450~700℃温度范围内球磨粉在流动H2和Ar混合气体中经2 h还原时,随着还原温度的升高,WO3还原反应顺序为WO3→WO2.9→WO2.72→WO2→W,700℃时可实现完全还原;Co3O4在450℃完全还原为Co,随着温度的进一步升高和时间的延长,Co与W反应转变为Co3W;最终还原产物由W、Co、Co3W和石墨组成;在700~1 000℃温度范围内还原粉在流动Ar中碳化时,随着碳化温度的升高,碳化反应按W(Co3W)→Co6W6C→Co3W3C→W2C→WC的顺序进行,在900℃下还原粉在2 h内可完全碳化,得到WC颗粒尺寸约为200~300 nm的WC-Co复合粉末.  相似文献   

6.
WC/Co纳米复合粉质量特性的研究   总被引:4,自引:4,他引:0  
徐涛 《硬质合金》2011,28(4):219-227
本文探讨了喷雾转换法制备WC/Co纳米复合粉的生产工艺特点、粉末的物理化学特性以及在超细合金中的应用效果。各方面的实验数据表明:WC/Co复合粉中WC碳化完全、粒度细而均匀,钨钴元素达到分子级均匀混合,Co对WC形成纳米级包覆,粉末颗粒外形多呈球状,球体由部分合金化的WC/Co粒子聚合而成,粒子之间存在明显的烧结颈,其亚晶尺寸在100nm以下。复合粉经强化球磨后制取的超细合金较传统工艺制备的合金的WC相晶粒更加均匀,具有更好的物理力学性能和更高的使用寿命。即使不添加抑制剂,复合粉制备的合金仍具有晶粒细而均匀的特点。  相似文献   

7.
以W、C、Co为原料粉末,经机械活化-反应热处理工艺制备纳米晶WC-Co复合粉末。实验发现活化粉末的固相反应具有以下特征:反应温度低,反应速度快。在800℃热处理时已有大量的WC生成。在850℃保温25minW2C就完成了向WC的转化。经900℃保温35min制备了晶粒尺寸为30.5nm的WC-Co复合粉末。  相似文献   

8.
纳米晶WC-Co复合粉末制备的研究   总被引:1,自引:0,他引:1  
采用W,C,Co粉末为原料,通过机械活化-反应热处理工艺制备出晶粒尺寸为30.5nm的WC-Co复合粉末。研究发现该工艺具有以下特征:反应温度低,反应速度快。在800℃热处理时已有大量的WC生成。在850℃保温25min,W2C就完成了向WC的转化。经900℃保温35min制得纳米晶粒WC-Co复合粉末。  相似文献   

9.
以偏钨酸铵、醋酸钴、裂解碳为原料,配置成料浆,通过喷雾干燥-氢气还原碳化(简称直接碳化法)和喷雾干燥-氮气煅烧-氢气还原碳化(简称煅烧-碳化法)制备WC-Co复合粉。对两种工艺制备粉末的性能和形貌进行对比,发现直接碳化法制备的WC-Co复合粉的颗粒在10100μm、平均粒度在50μm,大部分球形壳破裂,粉末仍然保持球形骨架,粉末松装密度小、流动性差;煅烧-碳化法制备的WC-Co复合粉末的颗粒度在10100μm、平均粒度在50μm,大部分球形壳破裂,粉末仍然保持球形骨架,粉末松装密度小、流动性差;煅烧-碳化法制备的WC-Co复合粉末的颗粒度在1050μm、平均颗粒度25μm,粉末球形度高、流动性好。将两种工艺制备的粉末制成YG6合金,对比发现直接碳化法得到WC-Co复合粉制备成的硬质合金硬度高、晶粒度小、密度高、孔隙度低、致密度高;将两种工艺制备的粉末进行热喷涂,发现煅烧-碳化法制备的粉末热喷涂时,涂层表面致密度高、WC保留率高、硬度高。  相似文献   

10.
以钨钴氧化物、炭黑和VC为原料,采用原位还原碳化法制备WC-Co复合粉末,将复合粉末进行放电等离子烧结致密化制备WC-Co硬质合金块体材料。研究了不同VC添加量的复合粉末和块体材料的相组成、显微组织和性能,结果表明:VC的添加量对复合粉末的相组成、合金的晶粒尺寸和性能具有重要的影响,原料中添加2.0%VC(质量分数)时可获得平均晶粒尺寸为101 nm,相组成仅为WC和Co且具有高硬度和良好韧性的硬质合金块体材料。  相似文献   

11.
本文通过实验探索了水溶化学法制备纳米WC/C0复合粉工艺,研究了影响喷雾转换、锻烧、碳化和调碳的工艺因素,找到了满足纳米WC/Co复合粉制备的工艺参数。在Kear等人的经典合成技术中,碳化钨钴纳米复合材料是由喷雾转化水溶液的化学计量量的水溶性钨源和钴源,然后用流化床通氢将钨钴氧化物还原为金属钨和钴,之后在一个充满CO/CO2的气体环境中将金属钨和钴碳化成纳米WUCo复合粉末。本研究不同于Kear等人的处理方法,涉及的WC/C0使用水溶性溶液钨、钴和碳前躯体加工的纳米复合材料,大量的WGCo纳米复合粉体是将钨、钴和碳在分子级水平上混合制备成一个复杂的前驱体粉末的独特方案,前驱体粉末在煅烧炉充满惰性气体约100撕00cC的温度下转化成一个含有W-Co-C-0的预复合粉粉末,随后在碳化炉低于1000℃的温度下碳化。实验表明,水溶化学法生产的纳米WC/Co复合粉较常规方法,具有晶粒细而均匀、流动性好等特点,更适于高性能硬质合金的生产。  相似文献   

12.
Co掺杂对粗颗粒、特粗颗粒WC粉末粒度与微观形貌的影响   总被引:1,自引:0,他引:1  
以粗颗粒与特粗颗粒W粉为原料,研究了Co掺杂对粗颗粒与特粗颗粒WC粉末粒度与微观形貌的影响。结果表明,Co掺杂有利于WC粉末Fsss的提高与游离碳的降低,有利于得到单晶WC粉末。当Co掺杂量为w(Co)=0.035%时,WC粉末颗粒与晶粒形貌发生巨大变化,WC晶粒的结晶完整性明显改善,呈现明显的生长台阶与生长平面,但特粗颗粒WC粉末颗粒形貌的规则度较粗颗粒WC粉末的低。当碳化温度由1900℃提高到2000℃后,Co掺杂特粗WC颗粒表面出现大量WC纳米颗粒依附物。  相似文献   

13.
以N-甲基吡咯烷酮分散的石墨烯代替常规的冶金炭黑作为碳源,采用短流程原位还原碳化反应制备出纳米晶WC-Co复合粉末。采用放电等离子烧结系统对复合粉末进行快速烧结致密化。结果表明,石墨烯作为碳源可显著降低原位还原碳化反应温度,复合粉末粒径细小且分布均匀。得到的超细晶硬质合金块体材料平均晶粒尺寸约为290 nm,HV_(30)硬度值为13.877±0.131 GPa,断裂韧性KIC值为8.3±0.1 MPa·m~(1/2)。通过HRTEM观测表明,试样中WC/WC晶界、WC/Co相界、WC/C相界具有很高的匹配度。  相似文献   

14.
喷雾干燥-氢还原制备W-50Cu纳米复合粉末过程中的相转变   总被引:4,自引:1,他引:3  
采用溶胶-喷雾干燥、煅烧和氢还原工艺制备了纳米级、W-50%Cu(质量分数,下同)复合粉末,采用扫描电镜(SEM)和X射线衍射分析(XRD)研究了粉末制备过程中的相演变.非晶态喷雾干燥前驱体经煅烧形成复合氧化物粉末,其形貌和相结构随煅烧温度而变化.煅烧后的复合氧化物粉末在还原过程中经过了一系列复杂的相转变,其相转变过程分为3个阶段:在350℃,粉末主要由Cu、Cu2O、WO3、W相组成;在450℃还原后粉末由Cu、Cu2O、WO3和WO2相组成;在550℃以上还原时,铜的氧化物全部变成Cu相,WO3和WO2渐渐变成W相,其中WO2一直在750℃仍保持稳定.一系列的XRD分析结果表明,还原后的W-Cu纳米复合粉末由W(Cu)超饱和固溶体新相和Cu相组成,其晶粒尺寸分别为33 nm和63 nm.  相似文献   

15.
对反应热处理技术(高能球磨+热处理)合成纳米晶WC-6Co硬质合金复合粉末的可行性进行了研究。结果表明,元素粉末经球磨活化后可降低WC的形成温度;在800℃反应热处理时,复合粉末中存在WC和W2C两种碳化物;而高于950℃热处理时,W2C则完全转化为WC相。纳米晶WC-6Co复合粉末中WC的晶粒尺寸随热处理时间延长、温度的升高而增大;在950℃热处理保温30min的条件下可获得WC晶粒尺寸为33.3nm的纳米晶WC-6Co复合粉末。  相似文献   

16.
研究了两步碳化工艺对氢还原/碳化制备的纳米WC粉末及其WC-Co合金性能的影响。结果表明,WC粉末的晶粒聚集和异常粗大颗粒主要是由于碳化初期钨颗粒因烧结合并增粗,而钨粉碳化不完全主要是由于碳化后期的温度偏低,利用先低温碳化后高温碳化的两步碳化工艺不仅能够有效抑制纳米颗粒烧结合并增粗,而且可以使钨粉充分碳化,得到颗粒细小、均匀,W2C含量极少的WC粉末;采用1120℃碳化加1180℃碳化的两步碳化工艺制备出的138 nm的WC粉末,W2C含量少于0.5%(质量分数),以其为原料制备的WC-Co烧结体显微组织结构均匀,为超细晶硬质合金,综合性能优良,洛氏硬度HRA高达93.7,抗弯强度高达4380 MPa。  相似文献   

17.
以偏钨酸铵水合物和可食用蔗糖为原料,在液相均相反应体系中制备出前驱体粉末,再采用还原-碳化法合成纳米碳化钨(WC)粉末。分别使用X射线衍射仪和扫描电镜来表征粉末试样的物相组成和微观结构,并且分析了合成机理。结果表明:当合成温度为1400℃时,可以制备出单相WC粉末,当合成温度为1350℃时,可以获得等轴状WC颗粒。然而,合成温度达到1450℃时,出现条状颗粒和异常长大的颗粒。此外,引入过量C源有利于碳化反应的进行,还能通过增加反应接触面积和缩短C原子扩散距离来细化WC颗粒。  相似文献   

18.
采用WC/Fe/Al混合粉末,通过机械合金化制备40v0l% WC/Fe(Al)固溶体复合粉末,利用冷喷涂沉积涂层并结合热处理原位反应制备了WC/FeAl金属间化合物基金属陶瓷涂层.研究了球磨时间对复合粉末相结构、晶粒尺寸及组织结构的影响,并分析了冷喷涂WC/FeAl金属间化合物基金属陶瓷涂层的组织和显微硬度.结果表明,机械合金化可获得WC陶瓷颗粒呈微/纳米多尺度分布的WC/Fe(Al)金属陶瓷复合粉末,球磨36 h的复合粉末基体相平均晶粒尺寸约为90 nm,冷喷复合涂层组织致密、多尺度WC颗粒在基体中均匀弥散分布,涂层显微硬度约为1060 HV0.3,涂层在650℃热处理后发生Fe(Al)固溶体向FeAl金属间化合物的原位转变,制备出了WC/FeAl金属间化合物基金属陶瓷涂层.  相似文献   

19.
研究了纳米晶WC-10Co硬质合金的力学性能和显著结构。这种纳米晶WC-10Co硬质合金粉末是将含有偏钨酸铵(AMT)和硝酸钴的溶液喷雾干燥制得的纳米晶前驱体粉末再经过还原和碳化制备的。直径约100nm的WC粉末与Co炽结相混合均匀,并在1毫乇压力和1375℃下进行烧结。为了与纳米晶料WC-10Co的显微结构和力学性能相比较,将直径范围为0.57-4μm的工业用WC粉末与Co粉混合,并在与纳米晶粉末相同的条件下进行烧结,在纳米晶WC-10Co硬质合金中加入不同量的TaC、Cr3C2和VC作为晶粒长大抑制剂。为研究WC-10Co硬质合金中Co粘结相的显微结构,以WC-10Co硬质合金烧结温度下制备了Co-W-C合金。WC-10Co硬质合金随着WC粒度的减小而增加的硬度因而符合霍尔-佩奇型关系式。WC-10Co硬质合金的断裂韧性随着Co粘结相的HCP(密排六方相)/FCC(面心六方相)比的增大(由于HCP/FCC相引起的)而提高。  相似文献   

20.
《硬质合金》2016,(1):19-23
关于纳米WC/Co复合粉制备技术的研究报道有很多,但实现产业化的技术方案较少。本文在自主研发设计的离子交换系统、高温流态化床等设备平台上,以偏钨酸铵(AMT)、碳酸钴(Co CO3)、乙二胺四乙酸(C10H16N2O8)为原料,首先采用离子交换、溶液复合法得到一定配比的钨钴复合溶液,然后进行喷雾干燥、煅烧得到前驱体钨钴复合氧化物,最后在高温流态化床中连续还原-碳化-调碳后得到不同钴含量的纳米WC-Co复合粉末,采用SEM、XRD等分析方法对粉末进行形貌观察及物相分析。制备所得WC/Co复合粉质量稳定,具有杂质含量低、碳化率高、游离碳含量低的特点,其中WC的亚晶尺寸小于100 nm,表明所开发的产业化技术切实可行。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号