首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
Visualization of vessel movements   总被引:1,自引:0,他引:1  
We propose a geographical visualization to support operators of coastal surveillance systems and decision making analysts to get insights in vessel movements. For a possibly unknown area, they want to know where significant maritime areas, like highways and anchoring zones, are located. We show these features as an overlay on a map. As source data we use AIS data: Many vessels are currently equipped with advanced GPS devices that frequently sample the state of the vessels and broadcast them. Our visualization is based on density fields that are derived from convolution of the dynamic vessel positions with a kernel. The density fields are shown as illuminated height maps. Combination of two fields, with a large and small kernel provides overview and detail. A large kernel provides an overview of area usage revealing vessel highways. Details of speed variations of individual vessels are shown with a small kernel, highlighting anchoring zones where multiple vessels stop. Besides for maritime applications we expect that this approach is useful for the visualization of moving object data in general.  相似文献   

2.
In this paper, we present an automated system for generating context‐preserving route maps that depict navigation routes as a path between nodes and edges inside a topographic network. Our application identifies relevant context information to support navigation and orientation, and generates customizable route maps according to design principles that communicate all relevant context information clearly visible on one single page. Interactive scaling allows seamless transition between the original undistorted map and our new map design, and supports user‐specified scaling of regions of interest to create personalized driving directions according to the drivers needs.  相似文献   

3.
Vector fields are a common concept for the representation of many different kinds of flow phenomena in science and engineering. Methods based on vector field topology are known for their convenience for visualizing and analysing steady flows, but a counterpart for unsteady flows is still missing. However, a lot of good and relevant work aiming at such a solution is available. We give an overview of previous research leading towards topology‐based and topology‐inspired visualization of unsteady flow, pointing out the different approaches and methodologies involved as well as their relation to each other, taking classical (i.e. steady) vector field topology as our starting point. Particularly, we focus on Lagrangian methods, space–time domain approaches, local methods and stochastic and multifield approaches. Furthermore, we illustrate our review with practical examples for the different approaches.  相似文献   

4.
Recent advances have made interactive ray tracing (IRT) possible on consumer desktop machines. These advances have brought about the potential for interactive global illumination (IGI) with enhanced realism through physically based lighting. IGI, unlike IRT, has a much higher computational complexity. Furthermore, since non‐primary rays constitute the majority of the computation, the rays are predominantly incoherent, making impractical many of the methods that have made IRT possible. Two methods that have already shown promise in decreasing the computational time of the GI solution are interleaved sampling and adaptive rendering. Interleaved sampling is a generalized sampling scheme that smoothly blends between regular and irregular sampling while maintaining coherence. Adaptive rendering algorithms adjust rendering quality, non‐uniformally, using a guidance scheme. While adaptive rendering has shown to provide speed‐up when used for off‐line rendering it has not been utilized in IRT due to its naturally incoherent nature. In this paper, we combine adaptive rendering and interleaved sampling within a component‐based solution into a new approach we term adaptive interleaved sampling. This allows us to tailor new adaptive heuristics for interleaved sampling of the individual components of the GI solution significantly improving overall performance. We present a novel component‐based IGI framework for which we achieve interactive frame rates for a range of effects such as indirect diffuse lighting, soft shadows and single scatter homogeneous participating media.  相似文献   

5.
Recent increases in terrorist activity around the world have made analyzing and understanding such activities more critical than ever. With the help of organizations such as the National Center for the Study of Terrorism and Responses to Terrorism (START), we now have detailed historical information on each terrorist event around the world since 1970. However, due to the size and complexity of the data, identifying terrorists' patterns and trends has been difficult. To better enable investigators in understanding terrorist activities, we propose a visual analytical system that focuses on depicting one of the most fundamental concepts in investigative analysis, the five W's (who, what, where, when, and why). Views in our system are highly correlated, and each represents one of the W's. With this approach, an investigator can interactively explore terrorist activities efficiently and discover reasons of attacks (why) by identifying patterns temporally (when), geo‐spatially (where), between multiple terrorist groups (who), and across different methods or modes of attacks (what). By coupling a global perspective with the details gleaned from asking these five questions, the system allows analysts to think both tactically and strategically.  相似文献   

6.
Understanding symmetries and arrangements in existing content is the first step towards providing higher level content aware editing capabilities. Such capabilities may include edits that both preserve existing structure as well as synthesize entirely new structures based on the extracted pattern rules. In this paper we show how to detect regular symmetries and arrangement along curved segments in vector art. We determine individual elements in the art by using the transformation similarity for sequences of sample points on the input curves. Then we detect arrangements of those elements along an arbitrary curved path. We can un-warp the arrangement path to detect symmetries near the path. We introduce novel applications inform of editing elements that are arranged along a curved path. This includes their sliding along the path, changing of their spacing, or their scale. We also allow the user to brush the elements that the system recognized along new paths.  相似文献   

7.
This paper presents a new interpolatory Loop scheme and an unified and mixed interpolatory and approximation subdivision scheme for triangular meshes. The former which is C1 continuous as same as the modified Butterfly scheme has better effect in some complex models. The latter can be used to solve the “popping effect” problem when switching between meshes at different levels of resolution. The scheme generates surfaces coincident with the Loop subdivision scheme in the limit condition having the coefficient k equal 0. When k equal 1, it will be changed into a new interpolatory subdivision scheme. Eigen‐structure analysis demonstrates that subdivision surfaces generated using the new scheme are C1 continuous. All these are achieved only by changing the value of a parameter k. The method is a completely simple one without constructing and solving equations. It can achieve local interpolation and solve the “popping effect” problem which are the method's advantages over the modified Butterfly scheme.  相似文献   

8.
The investigation of hemodynamic information for the assessment of cardiovascular diseases (CVDs) gained importance in recent years. Improved flow measuring modalities and computational fluid dynamics (CFD) simulations yield in reliable blood flow information. For a visual exploration of the flow information, domain experts are used to investigate the flow information combined with its enclosed vessel anatomy. Since the flow is spatially embedded in the surrounding vessel surface, occlusion problems have to be resolved. A visual reduction of the vessel surface that still provides important anatomical features is required. We accomplish this by applying an adaptive surface visualization inspired by the suggestive contour measure. Furthermore, an illustration is employed to highlight the animated pathlines and to emphasize nearby surface regions. Our approach combines several visualization techniques to improve the perception of surface shape and depth. Thereby, we ensure appropriate visibility of the embedded flow information, which can be depicted with established or advanced flow visualization techniques. We apply our approach to cerebral aneurysms and aortas with simulated and measured blood flow. An informal user feedback with nine domain experts, we confirm the advantages of our approach compared with existing methods, e.g. semi‐transparent surface rendering. Additionally, we assessed the applicability and usefulness of the pathline animation with highlighting nearby surface regions.  相似文献   

9.
Interactive computation of global illumination is a major challenge in current computer graphics research. Global illumination heavily affects the visual quality of generated images. It is therefore a key attribute for the perception of photo‐realistic images. Path tracing is able to simulate the physical behaviour of light using Monte Carlo techniques. However, the computational burden of this technique prohibits interactive rendering times on standard commodity hardware in high‐quality. Trying to solve the Monte Carlo integration with fewer samples results in characteristic noisy images. Global illumination filtering methods take advantage of the fact that the integral for neighbouring pixels may be very similar. Averaging samples of similar characteristics in screen‐space may approximate the correct integral, but may result in visible outliers. In this paper, we present a novel path tracing pipeline based on an edge‐aware filtering method for the indirect illumination which produces visually more pleasing results without noticeable outliers. The key idea is not to filter the noisy path traced images but to use it as a guidance to filter a second image composed from characteristic scene attributes that do not contain noise by default. We show that our approach better approximates the Monte Carlo integral compared to previous methods. Since the computation is carried out completely in screen‐space it is therefore applicable to fully dynamic scenes, arbitrary lighting and allows for high‐quality path tracing at interactive frame rates on commodity hardware.  相似文献   

10.
This paper presents a digital storytelling approach that generates automatic animations for time‐varying data visualization. Our approach simulates the composition and transition of storytelling techniques and synthesizes animations to describe various event features. Specifically, we analyze information related to a given event and abstract it as an event graph, which represents data features as nodes and event relationships as links. This graph embeds a tree‐like hierarchical structure which encodes data features at different scales. Next, narrative structures are built by exploring starting nodes and suitable search strategies in this graph. Different stages of narrative structures are considered in our automatic rendering parameter decision process to generate animations as digital stories. We integrate this animation generation approach into an interactive exploration process of time‐varying data, so that more comprehensive information can be provided in a timely fashion. We demonstrate with a storm surge application that our approach allows semantic visualization of time‐varying data and easy animation generation for users without special knowledge about the underlying visualization techniques.  相似文献   

11.
We present an approach for extracting extremal feature lines of scalar indicators on surface meshes, based on discrete Morse Theory. By computing initial Morse‐Smale complexes of the scalar indicators of the mesh, we obtain a candidate set of extremal feature lines of the surface. A hierarchy of Morse‐Smale complexes is computed by prioritizing feature lines according to a novel criterion and applying a cancellation procedure that allows us to select the most significant lines. Given the scalar indicators on the vertices of the mesh, the presented feature line extraction scheme is interpolation free and needs no derivative estimates. The technique is insensitive to noise and depends only on one parameter: the feature significance. We use the technique to extract surface features yielding impressive, non photorealistic images.  相似文献   

12.
Traversing voxels along a three dimensional (3D) line is one of the most fundamental algorithms for voxel‐based applications. This paper presents a new 6‐connectivity integer algorithm for this task. The proposed algorithm accepts voxels having different sizes in x, y and z directions. To explain the idea of the proposed approach, a 2D algorithm is firstly considered and then extended in 3D. This algorithm is a multi‐step as up to three voxels may be added in one iteration. It accepts both integer and floating‐point input. The new algorithm was compared to other popular voxel traversing algorithms. Counting the number of arithmetic operations showed that the proposed algorithm requires the least amount of operations per traversed voxel. A comparison of spent CPU time using either integer or floating‐point arithmetic confirms that the proposed algorithm is the most efficient. This algorithm is simple, and in compact form which also makes it attractive for hardware implementation.  相似文献   

13.
The curve-skeleton of a 3D object is an abstract geometrical and topological representation of its 3D shape. It maps the spatial relation of geometrically meaningful parts to a graph structure. Each arc of this graph represents a part of the object with roughly constant diameter or thickness, and approximates its centerline. This makes the curve-skeleton suitable to describe and handle articulated objects such as characters for animation. We present an algorithm to extract such a skeleton on-the-fly, both from point clouds and polygonal meshes. The algorithm is based on a deformable model evolution that captures the object's volumetric shape. The deformable model involves multiple competing fronts which evolve inside the object in a coarse-to-fine manner. We first track these fronts' centers, and then merge and filter the resulting arcs to obtain a curve-skeleton of the object. The process inherits the robustness of the reconstruction technique, being able to cope with noisy input, intricate geometry and complex topology. It creates a natural segmentation of the object and computes a center curve for each segment while maintaining a full correspondence between the skeleton and the boundary of the object.  相似文献   

14.
In recent work, a set of line digitization algorithms based on the hierarchy of runs in the digital line has unified and generalized the iterative line‐drawing algorithms used in computer graphics. In this paper, the additional structural information generated by these algorithms is leveraged to describe a run‐based approach to draw anti‐aliased line segments in which anti‐aliased run‐masks are substituted for the individual run lengths as the line is being drawn. The run‐masks are precomputed using a prefiltering technique such that one or more run‐masks are defined for each of the one or two possible run lengths that occur in the line. The run‐masks can be defined for any order or level of the hierarchy of runs in the digital line and the technique is illustrated using runs of pixels. Comparing the use of run‐masks to applying the prefiltering technique for each pixel in the line, a line of similar visual quality can be produced more efficiently. We place no restrictions on the placement of the end points of the line, which may reside anywhere on the two‐dimensional plane.  相似文献   

15.
The parallel vectors (PV) operator is a feature extraction approach for defining line‐type features such as creases (ridges and valleys) in scalar fields, as well as separation, attachment, and vortex core lines in vector fields. In this work, we extend PV feature extraction to higher‐order data represented by piecewise analytical functions defined over grid cells. The extraction uses PV in two distinct stages. First, seed points on the feature lines are placed by evaluating the inclusion form of the PV criterion with reduced affine arithmetic. Second, a feature flow field is derived from the higher‐order PV expression where the features can be extracted as streamlines starting at the seeds. Our approach allows for guaranteed bounds regarding accuracy with respect to existence, position, and topology of the features obtained. The method is suitable for parallel implementation and we present results obtained with our GPU‐based prototype. We apply our method to higher‐order data obtained from discontinuous Galerkin fluid simulations.  相似文献   

16.
Typically, flow volumes are visualized by defining their boundary as iso‐surface of a level set function. Grid‐based level sets offer a good global representation but suffer from numerical diffusion of surface detail, whereas particle‐based methods preserve details more accurately but introduce the problem of unequal global representation. The particle level set (PLS) method combines the advantages of both approaches by interchanging the information between the grid and the particles. Our work demonstrates that the PLS technique can be adapted to volumetric dye advection via streak volumes, and to the visualization by time surfaces and path volumes. We achieve this with a modified and extended PLS, including a model for dye injection. A new algorithmic interpretation of PLS is introduced to exploit the efficiency of the GPU, leading to interactive visualization. Finally, we demonstrate the high quality and usefulness of PLS flow visualization by providing quantitative results on volume preservation and by discussing typical applications of 3D flow visualization.  相似文献   

17.
Force-Directed Edge Bundling for Graph Visualization   总被引:2,自引:0,他引:2  
Graphs depicted as node-link diagrams are widely used to show relationships between entities. However, node-link diagrams comprised of a large number of nodes and edges often suffer from visual clutter. The use of edge bundling remedies this and reveals high-level edge patterns. Previous methods require the graph to contain a hierarchy for this, or they construct a control mesh to guide the edge bundling process, which often results in bundles that show considerable variation in curvature along the overall bundle direction. We present a new edge bundling method that uses a self-organizing approach to bundling in which edges are modeled as flexible springs that can attract each other. In contrast to previous methods, no hierarchy is used and no control mesh. The resulting bundled graphs show significant clutter reduction and clearly visible high-level edge patterns. Curvature variation is furthermore minimized, resulting in smooth bundles that are easy to follow. Finally, we present a rendering technique that can be used to emphasize the bundling.  相似文献   

18.
We introduce a new technique called Implicit Brushes to render animated 3D scenes with stylized lines in realtime with temporal coherence. An Implicit Brush is defined at a given pixel by the convolution of a brush footprint along a feature skeleton; the skeleton itself is obtained by locating surface features in the pixel neighborhood. Features are identified via image‐space fitting techniques that not only extract their location, but also their profile, which permits to distinguish between sharp and smooth features. Profile parameters are then mapped to stylistic parameters such as brush orientation, size or opacity to give rise to a wide range of line‐based styles.  相似文献   

19.
Depth‐of‐field is one of the most crucial rendering effects for synthesizing photorealistic images. Unfortunately, this effect is also extremely costly. It can take hundreds to thousands of samples to achieve noise‐free results using Monte Carlo integration. This paper introduces an efficient adaptive depth‐of‐field rendering algorithm that achieves noise‐free results using significantly fewer samples. Our algorithm consists of two main phases: adaptive sampling and image reconstruction. In the adaptive sampling phase, the adaptive sample density is determined by a ‘blur‐size’ map and ‘pixel‐variance’ map computed in the initialization. In the image reconstruction phase, based on the blur‐size map, we use a novel multiscale reconstruction filter to dramatically reduce the noise in the defocused areas where the sampled radiance has high variance. Because of the efficiency of this new filter, only a few samples are required. With the combination of the adaptive sampler and the multiscale filter, our algorithm renders near‐reference quality depth‐of‐field images with significantly fewer samples than previous techniques.  相似文献   

20.
We propose a novel system for designing and manufacturing surfaces that produce desired caustic images when illuminated by a light source. Our system is based on a nonnegative image decomposition using a set of possibly overlapping anisotropic Gaussian kernels. We utilize this decomposition to construct an array of continuous surface patches, each of which focuses light onto one of the Gaussian kernels, either through refraction or reflection. We show how to derive the shape of each continuous patch and arrange them by performing a discrete assignment of patches to kernels in the desired caustic. Our decomposition provides for high fidelity reconstruction of natural images using a small collection of patches. We demonstrate our approach on a wide variety of caustic images by manufacturing physical surfaces with a small number of patches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号