首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
以Ti_3AlC_2粉和锌铝合金ZA27粉作为原料,采用行星球磨混料和气氛保护烧结工艺制备了Ti_3AlC_2颗粒增强ZA27复合材料,重点研究了烧结温度对复合材料的相组成、力学性能和显微组织的影响。结果表明,随烧结温度的升高,复合材料的相对密度、维氏硬度、抗弯强度和抗拉强度都增大,且在870℃时抗弯强度和抗拉强度都达到最大值,分别为592和324 MPa。该温度下Ti_3AlC_2与ZA27之间发生了微弱的化学反应,有利于改善基体与颗粒增强相之间的界面结合效果。  相似文献   

2.
通过无压烧结技术和机械合金化技术,在烧结温度为870 °C,保温时间为2.5h的工艺条件下,制备了四种不同体积含量的Ti3AlC2 颗粒含量的Ti3AlC2/ZA27复合材料。研究了Ti3AlC2 颗粒含量对Ti3AlC2 /ZA27复合材料的硬度,密度,拉伸强度和弯曲强度的影响。结果表明界面处的微弱的化学反应有助于提高复合材料的界面结合能力,进而提高Ti3AlC2 /ZA27复合材料的机械性能。此外,随着Ti3AlC2 颗粒含量增多,Ti3AlC2 /ZA27复合材料的硬度和力学强度都随之增大,这主要归因于纳米尺度的Ti3AlC2颗粒的弥散增强结果。然而,随着Ti3AlC2 颗粒的增加到40 vol. %, 由于孔隙的增多,Ti3AlC2 /ZA27复合材料的硬度和力学强度又出现下降。对比制得的四种Ti3AlC2 /ZA27复合材料,30Ti3AlC2/ZA27复合材料拥有最大的抗拉强度、抗弯曲强度以及维氏硬度,分别为310 MPa,528 MPa 和1.24 GPa. 这些优异的性能除了归因于良好的界面结合,还归因于Ti3AlC2颗粒的细晶强化和弥散强化作用。  相似文献   

3.
经过2,5,7,9 kV放电电压作用后,分析了受电弓材料Ti_3AlC_2和Cu-Ti_3AlC_2的电弧烧蚀性。Cu-Ti_3AlC_2材料的电弧寿命和击穿电流都比Ti_3AlC_2的低。用高速摄影机记录2种材料的电弧形态。结果表明,Ti_3AlC_2上的电弧要比Cu-Ti_3AlC_2的电弧更加集中,伴随着更多的液滴飞溅。采用扫描电镜(SEM)观察了被侵蚀的2种材料表面情况。和Cu-Ti_2AlC_2的表面相比,Ti_3AlC_2的表面更加不均匀,表面覆盖有孔洞,显微裂纹和飞溅物。计算了不同电压下的电弧能量,在相同电压下,Cu-Ti_3AlC_2材料的电弧能量小于Ti_3AlC_2材料。采用拉曼光谱法测定了被烧损样品表面的成分。实验表明,Cu-Ti_3AlC_2更适合于做受电弓材料。  相似文献   

4.
以Ti,Al和TiC为原材料,用无压煅烧合成法制备三元化合物Ti_3AlC_2。详细讨论了煅烧温度和铝含量对多晶Ti_3AlC_2纯度的影响。利用X射线衍射仪、场发射扫描电镜和场发射透射电镜研究了粉末材料的组织结构、晶粒大小、层板厚度和选区电子衍射花样。结果表明1300℃是合成Ti_3AlC_2粉末的最佳煅烧温度,1:1.2:2是Ti/Al/TiC原材料的最佳摩尔比。用热压法制备了不同烧结温度下的Ti_3AlC_2块体试样,在1300℃热压制备的Ti_3AlC_2块体的相对密度可达99.9%,其维氏硬度和三点抗弯强度分别为5.7 GPa和630 MPa。通过场发射扫面电镜观察材料的断口形貌,进一步分析了Ti_3AlC_2块体材料的强化机理。  相似文献   

5.
通过2TiC-Ti-1.2Al体系的原位热压反应制备Ti_3AlC_2陶瓷,然后以59.2Ti-30.8Al-10Ti_3AlC_2(质量分数,下同,%)为反应体系,采用放电等离子烧结技术制备Ti_2AlC/Ti Al基复合材料。借助XRD、SEM分析产物的相组成和微观结构,并测量其室温力学性能。结果表明:原位热压烧结产物由Ti_3AlC_2和TiC相组成,Ti_3AlC_2呈典型的层状结构,TiC颗粒分布在其间;SPS法制备的Ti_2AlC/Ti Al基复合材料主要由Ti Al、Ti_3Al和Ti_2AlC相组成,Ti_2AlC增强相主要分布于基体晶界处,发挥了晶界/晶内内生型强化相的增强作用。力学性能测试表明:Ti_2AlC/Ti Al基复合材料的密度、维氏硬度、断裂韧性和抗弯强度分别为3.85 g/cm~3、5.37 GPa、7.17 MPa·m~(1/2)和494.85 MPa,穿晶、沿晶及层状撕裂等混合断裂特征对改善性能发挥了重要作用。  相似文献   

6.
介绍了三元层状Ti3AlC2陶瓷材料的制备技术、性能及应用。  相似文献   

7.
研究采用真空热压及热等静压方法制备Cu/Ti_3SiC_2/C/MWCNTs/Graphene/La纳米复合材料,采用摩擦磨损试验机研究对磨材料为GCr15时,镧含量对Cu/Ti_3SiC_2/C/MWCNTs/Graphene/La纳米复合材料的摩擦学性能的影响。研究了镧含量、正应力及旋转速度对纳米复合材料摩擦学行为的影响并揭示其相互作用机理,采用正交试验分析、方差分析及极差分析法来分析镧含量、正应力及旋转速度的相互作用。采用扫描电镜和能谱仪观察并分析磨损表面及磨削的形态及成分组分。结果表明,镧对纳米复合材料的摩擦磨损性能起到首要作用,当镧的质量分数为0.05%时,复合材料的磨损机理为磨粒磨损、剥层磨损和氧化磨损,而当镧的质量分数为0.1%和0.3%时,复合材料的磨损机理为粘着磨损和氧化磨损。  相似文献   

8.
通过搅拌铸造法制备了3种不同体积分数(2%,5%,10%)的SiCp/Mg-5Al-2Ca复合材料,并在673 K下进行了热挤压。铸态复合材料中,少量SiCp颗粒的加入就能破坏Al2Ca相沿基体合金晶界分布并有效细化Al_2Ca相析出尺寸。随着Si Cp体积分数的增高,Al_2Ca相尺寸有所减小,但不明显。经过热挤压后,Al2Ca相破碎并沿挤压方向排布,基体合金晶粒得到细化。晶粒尺寸以及Al2Ca相尺寸随着Si Cp体积分数的增高呈微小减小。与单组元基体合金相比较,挤压态Si Cp/Mg-5Al-2Ca复合材料的屈服强度和加工硬化率随着Si Cp体积分数的增高而逐渐增高,而延伸率则逐渐下降;抗拉强度最大值则出现在Si Cp体积分数为5%时。复合材料中Si Cp颗粒以及Al2Ca相的脱粘以及开裂是导致复合材料断裂的主要原因。  相似文献   

9.
对Ti3AlC2块体材料在1050~1450℃进行真空热处理,分析了该材料在热处理前后的物相组成和显微组织形貌。结果表明:经1050℃热处理后出现了新相Al3Ti到1250℃时该相消失;从1050~1250℃随温度升高Ti3AlC2含量逐渐增加,TiCx含量逐渐减少;经1250℃热处理之后,材料密度增加到4.01 g/cm3,Ti3AlC2含量增加到94.2%,Ti3AlC2晶粒长15~20μm、厚约2μm;从1250~1450℃随温度升高Ti3AlC2含量逐渐减少,TiCx含量逐渐增加,经1450℃热处理之后Ti3AlC2含量减为74.8%。因此,1250℃为Ti3AlC2块体材料最佳热处理温度。  相似文献   

10.
采用超声波化学镀覆技术和电镀技术分别对导电陶瓷Ti_3SiC_2颗粒表面和碳纤维表面进行镀铜处理。用粉末冶金法制备了两组成分相同的Ti_3SiC_2-碳纤维-铜-石墨复合材料,其中一组加入的是镀铜Ti_3SiC_2(A组),另一组加入的是不镀铜Ti_3SiC_2(B组),对它们的密度、电阻率、硬度和抗弯强度进行了测试。结果表明:随Ti_3SiC_2含量的增加两组复合材料的密度、导电性、硬度和抗弯强度明显提高,并且加镀铜Ti_3SiC_2的碳纤维-铜-石墨复合材料的性能指标明显优于加不镀铜Ti_3SiC_2的碳纤维-铜-石墨复合材料。  相似文献   

11.
通过分析机械球磨Al/TiO_2/TiC复合粉末的放热反应及原位合成动力学,确定Ti_3AlC_2/Al_2O_3/TiAl_3复合材料的合成路径。在此基础上,结合球磨后复合粉末的微观形貌和物相演变分析,提出复合材料的原位合成机理。结果表明:复合材料原位合成过程中存在中间产物TiO和TiC_x;机械球磨形成的"核壳结构"对原位合成组织细小均匀的Ti_3AlC_2/Al_2O_3/TiAl_3复合材料至关重要。  相似文献   

12.
采用无焊料电弧焊方法对Ti_3AlC_2陶瓷与Cu(Mg)合金进行焊接.观察分析了接头组织结构和物相组成,测试了焊接试样的弯曲强度.结果表明,Ti_3AlC_2陶瓷和Cu(Mg)合金之间具有良好的可焊接性.在适当的焊接工艺下,接头具有典型显微结构:在靠近Cu(Mg)合金的区域,自生成的细小TiCx颗粒均匀弥散在Cu(Ti, Al, Mg)合金网络内;在靠近Ti_3AlC_2陶瓷的区域,形成TiC_x相与Cu(Ti, Al, Mg)合金相交替层叠的特殊结构.焊接试样的断裂发生在Ti_3AlC_2陶瓷部分,表明接头的抗弯强度高于被焊接的Ti_3AlC_2陶瓷材料.  相似文献   

13.
研究了模具温度对触变成形Sip/ZA27复合材料组织及力学性能的影响。结果表明,随着模具温度升高,锭料的凝固速率变慢,初生α-Al颗粒尺寸和体积分数增大;而且初生α-Al颗粒中Zn元素的含量增加;此外,Si颗粒的团聚倾向变得严重。通过对试样的力学性能进行比较可知,最佳的模具温度为200℃,此时的抗拉强度和伸长率分别达到382 MPa和1.17%。而且随着模具温度的增加,断裂机制发生转变。  相似文献   

14.
研究了Ti_3AlC_2-Al_2O_3/TiAl_3复合材料在700~1000℃温度区间内的循环氧化行为,探讨了多相条件下的循环氧化机理。结果表明,复合材料具有优异的高温循环氧化性能,在700~900℃温度区间只能生成单一的Al_2O_3膜,而在1000℃下氧化膜主要为Al_2O_3和金红石型Ti O_2的混合物。由于复合材料的多相贯穿结构及Ti_3Al C_2相的选择性氧化,最终的氧化产物具有明显的多孔特征。  相似文献   

15.
采用热压烧结工艺,以Ti、Al、C、TiC粉末为原料制备了高密度的Ti3AlC2块体材料.用Archimedes法测定不同成分条件下合成试样的密度,用X射线衍射分析仪及扫描电镜分析材料的相组成和形貌,用维氏硬度计测试材料的硬度.结果表明,以TiC代替全部C和部分Ti时,材料的力学性能有了明显改善.Ti3AlC2陶瓷的微观结构为片层状,层状晶粒长度约为20 μm,硬度为3~5.0 GPa,抗拉强度为454.7 MPa,断裂韧度为5.60 MPa·m1/2.  相似文献   

16.
采用反应热压烧结法制备Ti3SiC2-Al2O3复合材料,研究热压温度和Al2O3含量对Ti3SiC2-Al2O3复合材料相组成、力学性能及抗氧化性能的影响。结果表明:采用反应热压烧结,可以在1450℃烧结得到致密度高、性能良好的Ti3SiC2-Al2O3复合材料。添加Al2O3可以起到第二相增强的作用,从而提高材料的强度。随着添加量的增加,复合材料的力学性能先提高后降低,当Al2O3添加量为20%(质量分数)时断裂韧性达最大值(7.10 MPa-m1/2),当Al2O3添加量为30%时抗弯强度达最大值(512 MPa)。Al2O3在高温下与TiO2反应生成具有耐高温和高抗热震性能的Al2Ti O5,可以有效提高Ti3SiC2基复合材料高温抗氧化性能。  相似文献   

17.
ZA27/SiC_p复合材料在氯化钠溶液中浸泡30 d,通入氧气,研究腐蚀对其表观和显微组织的影响。通过复合铸造制备不同SiC粒子含量的复合材料。采用光学显微镜和扫描电子显微镜研究材料的显微组织,结果表明复合材料基体发生了腐蚀,且优先发生在富锌η相。腐蚀过程不影响嵌入基体合金中的SiC粒子。电化学极化测试表明,复合材料中SiC粒子含量的增加,导致复合材料的耐腐蚀性降低。  相似文献   

18.
利用热压烧结法,在2400℃烧结温度下,制备了NbMo固溶体(此后记作(Nb,Mo)ss)基陶瓷颗粒增强复合材料。其中,ZrB_2陶瓷增强相的体积分数分别为15%,30%,45%和60%。研究了在800,1000和1200℃下,ZrB_2含量对复合材料抗氧化性和氧化产物演变的作用。结果表明,氧化温度和ZrB_2含量均对复合材料的氧化行为有影响。从氧化速率常数角度讲,ZrB_2-(Nb,Mo)ss复合材料的抗氧化性随ZrB_2含量的增加而提高,随氧化温度的提高而降低。800~1000℃的氧化产物中含有膜状Nb_2Zr_6O_(17)相,能作为屏障阻止氧气向基体扩散,因此在800~1000℃时,复合材料氧化速率较低。然而,在1200℃氧化时未发现Nb_2Zr_6O_(17)相,MoO_3的剧烈挥发和ZrO_2的体积效应破坏了Nb_2Zr_6O_(17)保护层,导致了氧化层严重剥落,材料的抗氧化性极差。综上,结合观察到的氧化产物形貌,详细阐述了不同ZrB_2含量的复合材料在不同温度下的抗氧化机制。  相似文献   

19.
研究了RE对Sip/ZA27复合材料的铸态、固溶态及半固态组织的影响,分析了随RE含量的变化复合材料组织形态的变化及RE的分布变化情况,并探究了RE对组织的影响机理.结果表明,随着RE含量的增加,晶粒形态由发达的羽毛状晶逐渐转变为等轴晶形态,晶粒尺寸呈减小趋势,在0.8%RE时晶粒尺寸最小;过量的RE与其他元素形成长针状的复杂化合物,使得细化作用减弱.  相似文献   

20.
通过先驱体浸渍裂解法制备了不同ZrC-SiC含量的C/C-ZrC-SiC复合材料,并研究了不同陶瓷含量对材料显微结构和烧蚀性能的影响。C/C-SiC和C/C-ZrC-Si C复合材料在2300°C的烧蚀火焰下均呈现出优异的抗烧蚀性能。随着Zr C陶瓷含量的增加,在烧蚀过程中形成了连续的氧化膜涂层及固态的Zr-Si-O中间相,并且氧化物薄膜的结构与Zr C-Si C陶瓷的含量密切相关。固态的Zr O_2-Zr C和Zr-Si-O中间相可以适当提高Si O_2的黏度,从而提升氧化膜的抗剥蚀能力。连续的Si O_2-Zr O_2-Zr C-Si C层将作为热量和氧气的扩散障碍层,阻止其向材料内部扩散而引起材料的进一步烧蚀。Zr C和Si C含量分别为27.2%和7.56%时,C/C-Zr C-Si C复合材料表现出更好的抗烧蚀性能,其质量烧蚀率和线烧蚀率分别为-3.51 mg/s和-1.88μm/s。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号