首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Tyrosine 34 is a prominent and conserved residue in the active site of the manganese superoxide dismutases in organisms from bacteria to man. We have prepared the mutant containing the replacement Tyr 34 --> Phe (Y34F) in human manganese superoxide dismutase (hMnSOD) and crystallized it in two different crystal forms, orthorhombic and hexagonal. Crystal structures of hMnSOD Y34F have been solved to 1.9 A resolution in a hexagonal crystal form, denoted as Y34Fhex, and to 2.2 A resolution in an orthorhombic crystal form, denoted as Y34Fortho. Both crystal forms give structures that are closely superimposable with that of wild-type hMnSOD, with the phenyl rings of Tyr 34 in the wild type and Phe 34 in the mutant very similar in orientation. Therefore, in Y34F, a hydrogen-bonded relay that links the metal-bound hydroxyl to ordered solvent (Mn-OH to Gln 143 to Tyr 34 to H2O to His 30) is broken. Surprisingly, the loss of the Tyr 34 hydrogen bonds resulted in large increases in stability (measured by Tm), suggesting that the Tyr 34 hydroxyl does not play a role in stabilizing active-site architecture. The functional role of the side chain hydroxyl of Tyr 34 can be evaluated by comparison of the Y34F mutant with the wild-type hMnSOD. Both wild-type and Y34F had kcat/Km near 10(9) M-1 s-1, close to diffusion-controlled; however, Y34F showed kcat for maximal catalysis smaller by 10-fold than the wild type. In addition, the mutant Y34F was more susceptible to product inhibition by peroxide than the wild-type enzyme. This activity profile and the breaking of the hydrogen-bonding chain at the active site caused by the replacement Tyr 34 --> Phe suggest that Tyr 34 is a proton donor for O2* - reduction to H2O2 or is involved indirectly by orienting solvent or other residues for proton transfer. Up to 100 mM buffers in solution failed to enhance catalysis by either Y34F or the wild-type hMnSOD, suggesting that protonation from solution cannot enhance the release of the inhibiting bound peroxide ion, likely reflecting the enclosure of the active site by conserved residues as shown by the X-ray structures. The increased thermostability of the mutant Y34F and equal diffusion-controlled activity of Y34F and wild-type enzymes with normal superoxide levels suggest that evolutionary conservation of active-site residues in metalloenzymes reflects constraints from extreme rather than average cellular conditions. This new hypothesis that extreme rather than normal substrate concentrations are a powerful constraint on residue conservation may apply most strongly to enzyme defenses where the ability to meet extreme conditions directly affects cell survival.  相似文献   

2.
We have observed thermochromism (temperature-dependent absorption) for anion complexes of manganese superoxide dismutase indicating a change in coordination number for the metal complex at low temperatures. The ligand field spectra for the Mn(III) ion, characteristic of five-coordination for the azide complex at 295 K, cleanly convert to spectra reflecting six-coordination at low temperature, with a midpoint for the transition near 200 K. The active site structure is temperature-dependent, a relatively rigid, distorted octahedral low-temperature Mn complex melting with dehydration (or displacement of one of the protein ligands) to form a five-coordinated complex under physiological conditions. Thermodynamic parameters for the transition estimated from van't Hoff analysis (delta HvH = 5 kcal/mol; delta SvH = 22 cal/mol K) are consistent with reduced chemical binding and increased fluxionality at room temperature. This thermochromism of MnSD demonstrates the existence of distinct isomeric forms of the active site metal complex, whose relative stability depends on the degree of vibrational excitation. The marginal destabilization of the six-coordinate anion complex under physiological conditions suggests that the enzyme may thermally control the stability of intermediates in a dissociative displacement mechanism for substrate binding and redox.  相似文献   

3.
In some families with amyotrophic lateral sclerosis (ALS), the disease is linked to mutations in the gene encoding CuZn-superoxide dismutase. The mutant CuZn-superoxide dismutases appear to cause motor neuron degeneration by a toxic property, suggested to be linked to an altered reactivity of the active-site Cu ions. Asp90Ala mutant CuZn-superoxide dismutase was isolated from six patients with ALS, allowing properties of the mutant enzyme synthesized and conditioned in patients with ALS to be examined. The molecular mass of the Asp90Ala mutant CuZn-superoxide dismutase was 45 Da lower than that of the wild-type enzyme, as expected from the amino acid exchange. The mobility after sodium dodecyl sulfate-polyacrylamide gel electrophoresis was markedly increased, however, suggesting altered properties of the polypeptide. The mutant CuZn-superoxide dismutase showed a minimal reduction in stability but did not differ significantly from the wild-type enzyme in enzymic activity, in content and affinity for active-site Cu ions and in the propensity to catalyze formation of hydroxyl radicals. Our findings suggest that the deleterious effect of mutant CuZn-superoxide dismutases on motor neurons in ALS is not related to altered reactivity of active-site Cu ions, resulting in increased oxidant stress. Attention should therefore also be directed at other mechanisms and properties of the mutant polypeptides and their degradation products.  相似文献   

4.
In Escherichia coli manganese superoxide dismutase (MnSOD), the absolutely conserved Glu170 of one monomer is hydrogen-bonded to the Mn ligand His171 of the other monomer, forming a double bridge at the dimer interface. Point mutation of Glu170 --> Ala destabilizes the dimer structure, and the mutant protein occurs as a mixture of dimer and monomer species. The purified E170A MnSOD contains exclusively Fe and is devoid of superoxide dismutase activity. E170A Fe2-MnSOD closely resembles authentic FeSOD in terms of spectroscopic properties, anion interactions and pH titration behavior. Reconstitution of E170A Fe2-MnSOD with Mn(II) salts does not restore superoxide dismutase activity despite the spectroscopic similarity between E170A Mn2-MnSOD and wild type Mn2-MnSOD. Growth of sodA+ and sodA- E. coli containing the mutant plasmid pDT1-5(E170A) is impaired, suggesting that expression of mutant protein is toxic to the host cells.  相似文献   

5.
We have expressed and characterized a mutant of Xenopus laevis Cu,Zn superoxide dismutase in which four highly conserved charged residues belonging to the electrostatic loop have been replaced by neutral side chains: Lys120 --> Leu, Asp130 --> Gln, Glu131 --> Gln, and Lys134 --> Thr. At low ionic strength, the mutant enzyme is one of the fastest superoxide dismutases ever assayed (k = 6.7 x 10(9) M(-1) s(-1), at pH 7 and mu = 0.02 M). Brownian dynamics simulations give rise to identical enzyme-substrate association rates for both wild-type and mutant enzymes, ruling out the possibility that enhancement of the activity is due to pure electrostatic factors. Comparative analysis of the experimental catalytic rate of the quadruple and single mutants reveals the nonadditivity of the mutation effects, indicating that the hyperefficiency of the mutant is due to a decrease of the energy barrier and/or to an alternative pathway for the diffusion of superoxide within the active site channel. At physiological ionic strength the catalytic rate of the mutant at neutral pH is similar to that of the wild-type enzyme as it is to the catalytic rate pH dependence. Moreover, mutation effects are additive. These results show that, at physiological salt conditions, electrostatic loop charged residues do not influence the diffusion pathway of the substrate and, if concomitantly neutralized, are not essential for high catalytic efficiency of the enzyme, pointing out the role of the metal cluster and of the invariant Arg141 in determining the local electrostatic forces facilitating the diffusion of the substrate towards the active site.  相似文献   

6.
7.
Mutations were made in the activation loop tyrosine of the kinase domain of the oncoprotein v-Fps to assess the role of autophosphorylation in catalysis. Three mutant proteins, Y1073E, Y1073Q, and Y1073F, were expressed and purified as fusion proteins of glutathione-S-transferase from Escherichia coli and their catalytic properties were evaluated. Y1073E, Y1073Q, and Y1073F have k(cat) values that are reduced by 5-, 35-, and 40-fold relative to the wild-type enzyme, respectively. For all mutant enzymes, the Km values for ATP and a peptide substrate, EAEIYEAIE, are changed by 0.4-2-fold compared to the wild-type enzyme. The slopes for the plots of relative turnover versus solvent viscosity [(k(cat))eta] are 0.71 +/- 0.08, 0.10 +/- 0.06, and approximately 0 for wild type, Y1073Q, and Y1073E, respectively. These results imply that the phosphoryl transfer rate constant is reduced by 19- and 130-fold for Y1073E and Y1073Q compared to the wild-type enzyme. The dissociation constant of the substrate peptide is 1.5-2.5-fold lower for the mutants compared to wild type. The inhibition constant for EAEIFEAIE, a competitive inhibitor, is unaffected for Y1073E and raised 3-fold for Y1073Q compared to wild type. Y1073E and Y1073Q are strongly activated by free magnesium to the same extent and the apparent affinity constant for the metal is similar to that for the wild-type enzyme. The data indicate that the major role of autophosphorylation in the tyrosine kinase domain of v-Fps is to increase the rate of phosphoryl transfer without greatly affecting active-site accessibility or the local environment of the activating metal. Finally, the similar rate enhancements for phosphoryl transfer in v-Fps compared to protein kinase A [Adams et al. (1995) Biochemistry 34, 2447-2454] upon autophosphorylation suggest a conserved mechanism for communication between the activation loop and the catalytic residues of these two enzymes.  相似文献   

8.
The nicotianamine-deficient mutant chloronerva resembles phenotypically an Fe-deficient plant despite the high accumulation of Fe in the leaves, whereas if suffers from Cu deficiency in the shoot. Two-dimensional electrophoretic separation of proteins from root tips and leaves of wild-type Lycopersicon esculentum Mill. cv Bonner Beste and the mutant grown with and without Fe showed a number of consistent differences. In root tips of the Fe-deficient wild type and the Fe-sufficient as well as the Fe-deficient mutant, the expression of glyceraldehyde-3-phosphate dehydrogenase, formate dehydrogenase, and ascorbate peroxidase was increased. In leaves of the Fe-sufficient and -deficient mutant, Cu-containing chloroplastic and cytosolic superoxide dismutase (Cu-Zn) and plastocyanin (Cu) were nearly absent. This low plastocyanin content could be restored by supplying Cu via the xylem, but the superoxide dismutase levels could not be increased by this treatment. The differences in the protein patterns between wild type and mutant indicate that the apparent Fe deficiency of mutant plants led to an increase in enzymes involved in anaerobic metabolism as well as enzymes involved in stress defense. The biosynthesis of plastocyanin was diminished in mutant leaves, but it was differentially induced by increased Cu content.  相似文献   

9.
We have refined the X-ray structures of two site-directed mutants of the iron-dependent superoxide dismutase (SOD) from Mycobacterium tuberculosis. These mutations which affect residue 145 in the enzyme (H145Q and H145E) were designed to alter its metal-ion specificity. This residue is either Gln or His in homologous SOD enzymes and has previously been shown to play a role in active-site interactions since its side-chain helps to coordinate the metal ion via a solvent molecule which is thought to be a hydroxide ion. The mutations were based on the observation that in the closely homologous manganese dependent SOD from Mycobacterium leprae, the only significant difference from the M. tuberculosis SOD within 10 A of the metal-binding site is the substitution of Gln for His at position 145. Hence an H145Q mutant of the M. tuberculosis (TB) SOD was engineered to investigate this residue's role in metal ion dependence and an isosteric H145E mutant was also expressed. The X-ray structures of the H145Q and H145E mutants have been solved at resolutions of 4.0 A and 2.5 A, respectively, confirming that neither mutation has any gross effects on the conformation of the enzyme or the structure of the active site. The residue substitutions are accommodated in the enzyme's three-dimensional structure by small local conformational changes. Peroxide inhibition experiments and atomic absorption spectroscopy establish surprisingly the H145E mutant SOD has manganese bound to it whereas the H145Q mutant SOD retains iron as the active-site metal. This alteration in metal specificity may reflect on the preference of manganese ions for anionic ligands.  相似文献   

10.
BACKGROUND: The mucosal pathology of Helicobacter pylori infection may in part be due to excessive production of reactive oxygen metabolites (ROMs) by phagocytes. The influence of H pylori infection on mucosal superoxide dismutases, some major scavenger enzymes of ROM was investigated. In humans superoxidase dismutase is present in at least two forms-that is, mitochondrial manganese (Mn)-superoxide dismutase and cytoplasmic copper-zinc (CuZn)-superoxide dismutase. METHODS: The amount and activity of both superoxide dismutases were measured, respectively by enzyme linked immunosorbent assay (ELISA) and spectrophotometrical enzyme activity assay, in gastric biopsy homogenates of patients with normal mucosa (n = 39) and in patients with H pylori related gastritis (n = 71). Infection and gastritis were confirmed by a combination of culture, serology, and histology. RESULTS: The amount (p < 0.001) and activity (p < or = 0.05) of Mn-superoxide dismutase were increased by about twofold to three-fold, whereas the amount and activity of CuZn-superoxide dismutase showed a slight decrease in gastric mucosa of patients with H pylori gastritis, in both antrum and corpus, compared with normal mucosa of patients without H pylori infection. Mn-superoxide dismutase concentrations in biopsy specimens of histologically normal corpus from patients with an inflamed antrum were significantly higher (p < 0.01) than that of patients with a histologically normal antrum. CONCLUSION: H pylori infection has a differential effect on mitochondrial and cytoplasmic superoxide dismutase in the gastric mucosa, reflected by a pronounced increase in the cytokine inducible Mn-superoxide dismutase and a marginal decrease in the constitutive CuZn-superoxide dismutase.  相似文献   

11.
Pigeon liver malic enzyme was inactivated by ferrous sulfate in the presence of ascorbate. Manganese and some other divalent metal ions provided complete protection of the enzyme against the Fe(2+)-induced inactivation. The inactivated enzyme was subsequently cleaved by the Fe(2+)-ascorbate system at Asp258-Ile259, which was presumably the Mn(2+)-binding site of the enzyme [Wei, C. H., Chou, W. Y., Huang, S. M., Lin, C. C., & Chang, G. G. (1994) Biochemistry 33, 7793-7936]. For identification of Asp258 as the putative metal-binding site of the enzyme, we prepared four mutant enzymes substituted at Asp258 with glutamate (D258E), asparagine (D258N), lysine (D258K), or alanine (D258A), respectively. These mutant proteins were recombinantly expressed in a bacterial expression system (pET-15b) with a stretch of histidine residues attached at the N-terminus and were successfully purified to apparent homogeneity by a single Ni-chelated affinity column. Among the four mutants, only D258E possessed 0.8% residual activity after purification; all other purified mutants had < 0.0001% residual activity in catalyzing the oxidative decarboxylation of L-malate. The D258E mutant was susceptible to inactivation by the Fe(2+)-ascorbate system, albeit with much slower inactivation rate, and was protected by the Mn2+ to a lesser extent as compared to the wild-type enzyme. None of the mutants were cleaved by the Fe(2+)-ascorbate system under conditions that cleaved the natural or wild-type enzyme at Asp258.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
In the present study we examine the role of transmembrane aromatic residues of the delta-opioid receptor in ligand recognition. Three-dimensional computer modeling of the receptor allowed to identify an aromatic pocket within the helices bundle which spans transmembrane domains (Tms) III to VII and consists of tyrosine, phenylalanine, and tryptophan residues. Their contribution to opioid binding was assessed by single amino acid replacement: Y129F and Y129A (Tm III), W173A (Tm IV), F218A and F222A (Tm V), W274A (Tm VI), and Y308F (Tm VII). Scatchard analysis shows that mutant receptors, transfected into COS cells, are expressed at levels comparable with that of the wild-type receptor. Binding properties of a set of representative opioids were examined. Mutations at position 129 most dramatically affected the binding of all tested ligands (up to 430-fold decrease of deltorphin II binding at Y129A), with distinct implication of the hydroxyl group and the aromatic ring, depending on the ligand under study. Affinity of most ligands was also reduced at Y308F mutant (up to 10-fold). Tryptophan residues seemed implicated in the recognition of specific ligand classes, with reduced binding for endogenous peptides at W173A mutant (up to 40-fold) and for nonselective alkaloids at W274A mutant (up to 65-fold). Phenylalanine residues in Tm V appeared poorly involved in opioid binding as compared with other aromatic amino acids examined. Generally, the binding of highly selective delta ligands (TIPPpsi, naltrindole, and BW373U86) was weakly modified by these mutations. Noticeably, TIPPpsi binding was enhanced at W274A receptor by 5-fold. Conclusions from our study are: (i) aromatic amino acid residues identified by the model contribute to ligand recognition, with a preponderant role of Y129; (ii) these residues, which are conserved across opioid receptor subtypes, may be part of a general opioid binding domain; (iii) each ligand-receptor interaction is unique, as demonstrated by the specific binding pattern observed for each tested opioid compound.  相似文献   

13.
Mutants of cytochrome b5 were designed to achieve reorientation of individual axial imidazole ligands. The orientation of the axial ligand planes is thought to modulate the reduction potential of bis(imidazole) axially ligated heme proteins. The A67V mutation achieved this goal through the substitution of a bulkier, hydrophobic ligand for a residue, in the sterically hindered hydrophobic heme binding pocket. Solution structures of mutant and wild-type proteins in the region of the mutation were calculated using restraints obtained from 1H and 15N 2D homonuclear and heteronuclear NMR spectra and 1H-15N 3D heteronuclear NMR spectra. More than 10 restraints per residue were used in the refinement of both structures. Average local rmsd for 20 refined structures was 0.30 A for the wild-type structure and 0.38 A for the A67V mutant. The transfer of amide proton resonance assignments from wild-type to the mutant protein was achieved through overlays of 15N-1H heteronuclear correlation spectra of the reduced proteins. Side chain assignments and sequential assignments were established using conventional assignment strategies. Calculation of the orientation of the components of the anisotropic paramagnetic susceptibility tensor, using methods similar to procedures applied to the wild-type protein, shows that the orientation of the in-plane components are identical in the wild-type and mutant proteins. However, the orientation of the z-component of the susceptibility tensor calculated for the mutant protein differs by 17 degrees for the A-form and by 11 degrees for the B-form from the orientation calculated for the wild-type protein. The rotation of the z-component of the susceptibility tensor (toward the delta meso proton) is in the same direction and is of the same magnitude as the rotation of the H63 imidazole ring induced by mutation.  相似文献   

14.
We determined 5.8 kilobases of nucleotide sequence upstream of the rubredoxin encoding rubA gene of Acinetobacter calcoaceticus (Ac) ADP1. Sequence analysis revealed four open reading frames named cysD', cobQ, sodA and lysS, coding for proteins with high similarity to known sulfate adenylate transferases (partial), cobyric acid synthases, superoxide dismutases (Sod) and lysyl tRNA synthetases, respectively. Out of a large number of bacterial Sod sequences SodA of Ac ADP1 is the first member of the Fe/Mn Sod family apparently located in the periplasmic space.  相似文献   

15.
The catalytic rate constant of recombinant Photobacterium leiognathi Cu,Zn superoxide dismutase has been determined as a function of pH by pulse radiolysis. At pH 7 and low ionic strength (I = 0.02 M) the catalytic rate constant is 8.5 x 10(9) M-1 s-1, more than two times the value found for all the native eukaryotic Cu,Zn superoxide dismutases investigated to date. Similarly, Brownian dynamics simulations indicate an enzyme-substrate association rate more than two times higher than that found for bovine Cu,Zn superoxide dismutase. Titration of the paramagnetic contribution to the water proton relaxation rate of the P. leiognathi with increasing concentration of halide ions with different radii indicates that the proteic channel delimiting the active site is wider than 4.4 A. This is at variance with that found on the eukariotic enzymes, and provides a rationale for the high catalytic rate of the bacterial enzyme. Evidence for solvent exposure of the active site different from that observed in the eukaryotic enzyme is suggested from the pH dependence of the water proton relaxation rate and of the EPR spectrum line shape, which indicate the occurrence of a prototropic equilibrium at pH 9.1 and 9.0, respectively. The pH dependence of the P. leiognathi catalytic rate has a trend different from that observed in the bovine enzyme, indicating that groups differently exposed to the solvent are involved in the modulation of the enzyme-substrate encounter.  相似文献   

16.
There are two types of homologous enzymes catalysing the dismutation of the superoxide radical--Cu-Zn superoxide dismutases, and manganese or iron superoxide dismutases. In the latter two forms there is a high percentage of identity in the primary structures, and the tertiary structures are very similar particularly in the areas of the active site and in the residues responsible for the formation of the dimer. The quaternary structure of the dimer is also highly conserved. However, it has been found that despite this conservation there is strong metal ion specificity and many enzymes in the family will only be active if the correct metal ion is present. The purpose of this study has been to analyse solved X-ray structures for interactions common in both the manganese and iron forms and those that are specific to each, which may indicate reasons for the metal ion specificity. Initial analysis points to the probability that it is a combination of a number of residues, and not necessarily the same ones in every instance, which confer the specificity. In addition we have identified some anomalies in the currently available Fe/MnSOD structures which may require further remodelling and refinement.  相似文献   

17.
Human serum transferrin N-lobe (hTF/2N) has four iron-binding ligands, including one histidine, one aspartate, and two tyrosines. The present report elucidates the inequivalence of the two tyrosine ligands (Tyr 95 and Tyr 188) on the metal-binding properties of hTF/2N by means of site-directed mutagenesis, metal release kinetics, and absorption and electron paramagnetic resonance (EPR) spectroscopies. When the liganding tyrosines were mutated individually to phenylalanine, the resulting mutant Y95F showed a weak binding affinity for iron and no affinity for copper, whereas, mutant Y188F completely lost the ability to bind iron but formed a stable complex with copper. Since other studies have demonstrated that mutations of the other two ligands, histidine and aspartate, did not completely abolish iron binding, the present findings suggest that the tyrosine ligand at position 188 is essential for binding of iron to occur. Replacement of Tyr 188 with phenylalanine created a favorable chemical environment for copper coordination but a fatal situation for iron binding. The positions of the two liganding tyrosines in the metal-binding cleft suggest a reason for the inequivalence.  相似文献   

18.
The crystal structure of azide-inhibited bovine Cu,Zn superoxide dismutase has been studied and refined based on X-ray synchrotron radiation data, in conjunction with difference Fourier and restrained crystallographic refinement techniques. The final R-factor for the 20,756 reflections in the 10.0 to 2.1 A resolution range is 0.166. In both enzyme subunits, the azide anion, which is a competitive inhibitor expected to mimic the superoxide binding mode, is observed directly coordinated to the Cu2+ at the place of the metal-bound water molecule, forming an ion pair with the conserved active site residue Arg141. The coordination sphere of Cu2+ is partly altered with respect to the uninhibited enzyme: a displacement of 0.67 A in subunit A, and 0.37 A in subunit B of the dimeric enzyme is observed for the Cu2+. Only two ligands in the Cu2+ coordination sphere (His46 and His118) are affected by azide binding, whereas virtually no rearrangement of the Zn2+ ligands is reported.  相似文献   

19.
The enzymatic properties and the three-dimensional structure of spinach glycolate oxidase which has the active-site Tyr129 replaced by Phe (Y129F glycolate oxidase) has been studied. The structure of the mutant is unperturbed which facilitates interpretation of the biochemical data. Y129F glycolate oxidase has an absorbance spectrum with maxima at 364 and 450 nm (epsilon max = 11400 M-1 cm-1). The spectrum indicates that the flavin is in its normal protonated form, i.e. the Y129F mutant does not lower the pKa of the N(3) of oxidized flavin as does the wild-type enzyme [Macheroux, P., Massey, V., Thiele, D. J., and Volokita, M. (1991) Biochemistry 30, 4612-4619]. This was confirmed by a pH titration of Y129F glycolate oxidase which showed that the pKa is above pH 9. In contrast to wild-type glycolate oxidase, oxalate does not perturb the absorbance spectrum of Y129F glycolate oxidase. Moreover oxalate does not inhibit the enzymatic activity of the mutant enzyme. Typical features of wild-type glycolate oxidase that are related to a positively charged lysine side chain near the flavin N(1)-C(2 = O), such as stabilization of the anionic flavin semiquinone and formation of tight N(5)-sulfite adducts, are all conserved in the Y129F mutant protein. Y129F glycolate oxidase exhibited about 3.5% of the wild-type activity. The lower turnover number for the mutant of 0.74 s-1 versus 20 s-1 for the wild-type enzyme amounts to an increase of the energy of the transition state of about 7.8 kJ/mol. Steady-state analysis gave Km values of 1.5 mM and 7 microM for glycolate and oxygen, respectively. The Km for glycolate is slightly higher than that found for wild-type glycolate oxidase (1 mM) whereas the Km for oxygen is much lower. As was the case for wild-type glycolate oxidase, reduction was found to be the rate-limiting step in catalysis, with a rate of 0.63 s-1. The kinetic properties of Y129F glycolate oxidase provide evidence that the main function of the hydroxyl group of Tyr129 is the stabilization of the transition state.  相似文献   

20.
We have compared the active sites of Escherichia coli Fe-substituted (Mn)superoxide dismutase [Fe-sub-(Mn)SOD] and Fe-SOD to elucidate the basis for the inactivity of Fe-sub-(Mn)SOD, despite its apparent similarity to Fe-SOD. The active site of (reduced) Fe2+-sub-(Mn)SOD is qualitatively similar to that of native Fe2+-SOD, indicating similar active site structures and coordination environments for Fe2+. Its nativelike pK is indicative of nativelike local electrostatics, and consistent with Fe2+-sub-(Mn)SOD's retention of ability to reduce O2*- [Vance and Miller (1998) J. Am. Chem. Soc. 120(3), 461-467]. The active site of (oxidized) Fe3+-sub-(Mn)SOD differs from that of Fe3+-SOD with respect to the EPR signals produced at both neutral and high pH, indicating different coordination environments for Fe3+. Although Fe3+-sub-(Mn)SOD binds the small anions N3- and F-, the KD for N3- is tighter than that of Fe3+-SOD, suggesting that the (Mn)SOD protein favors anion binding more than does the (Fe)SOD protein. The EPR spectral consequences of binding F- are reminiscent of those observed upon binding the first F- to Fe3+-SOD, but the EPR spectrum obtained upon binding N3- is different, consistent with crystallographic observation of a different binding mode for N3- in Thermus thermophilus Mn-SOD than Fe-SOD [Lah, M., et al. (1995) Biochemistry 34, 1646-1660]. We find a pK of 8.5 to be associated with dramatic changes in the EPR spectrum. In addition, we confirm the pK between 6 and 7 that has previously been reported based on changes in the optical signal and N3- binding [Yamakura, F., et al. (1995) Eur. J. Biochem. 227, 700-706]. However, this latter pK appears to be associated with much subtler changes in the EPR spectrum. The non-native pKs observed in Fe3+-sub-(Mn)SOD and the differences in the Fe3+ coordination indicated by the EPR spectra are consistent with Fe3+-sub-(Mn)SOD's inability to oxidize O2*- and suggest that its low E degrees is due to perturbation of the oxidized state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号