首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new hemodialysis membrane manufactured by a blend of polyethersulfone (PES) and polyvinylpyrrolidone (PVP) was evaluated in vitro and in vivo. Goat was selected as the experimental animal. The clearance and the reduction ratio after the hemodialysis of small molecules (urea, creatinine, phosphate) for the PES membrane were higher in vitro than that in vivo. The reduction ratio of β2-microglobulin was about 50% after the treatment for 4 h. The biocompatibility profiles of the membranes indicated slight neutropenia and platelet adhesion at the initial stage of the hemodialysis. Electrolyte, blood gas, and blood biochemistry were also analyzed before and after the treatment. The results indicated that PES hollow fiber membrane had a potential widely use for hemodialysis.  相似文献   

2.
Microspheres have been prepared from the resorbable linear polyester of β-hydroxybutyric acid (polyhydroxybutyrate, PHB) by the solvent evaporation technique and investigated in vitro and in vivo. Biocompatibility of the microspheres has been proved in tests in the culture of mouse fibroblast cell line NIH 3T3 and in experiments on intramuscular implantation of the microspheres to Wistar rats for 3 months. Tissue response to the implantation of polymeric microspheres has been found to consist in a mild inflammatory reaction, pronounced macrophage infiltration that increases over time, involving mono- and poly-nuclear foreign body giant cells that resorb the polymeric matrix. No fibrous capsules were formed around polymeric microparticles; neither necrosis nor any other adverse morphological changes and tissue transformation in response to the implantation of the PHB microparticles were recorded. The results of the study suggest that polyhydroxybutyrate is a good candidate for fabricating prolonged-action drugs in the form of microparticles intended for intramuscular injection.  相似文献   

3.
In addition to calcium phosphate-based ceramics, glass-based materials have been utilized as bone substitutes, and silicate in these materials has been suggested to contribute to their ability to stimulate bone repair. In this study, a silicate-containing α-tricalcium phosphate (α-TCP) ceramic was prepared using a wet chemical process. Porous granules composed of silicate-containing α-TCP, for which the starting composition had a molar ratio of 0.05 for Si/(P + Si), and silicate-free α-TCP were prepared and evaluated in vivo. When implanted into bone defects that were created in rat femurs, α-TCP ceramics either with or without silicate were biodegraded, generating a hybrid tissue composed of residual ceramic granules and newly formed bone, which had a tissue architecture similar to physiological trabecular structures, and aided regeneration of the bone defects. Supplementation with silicate significantly promoted osteogenesis and delayed biodegradation of α-TCP. These results suggest that silicate-containing α-TCP is advantageous for initial skeletal fixation and wound regeneration in bone repair.  相似文献   

4.
Matured osteoblasts were proved to be located in the bone formation accelerated by induced large surface charges on the electrically polarized hydroxyapatite (HA) ceramics regardless of the charge polarities, whereas the spatial cell distribution patterns were different. Polarized HA ceramic plates with an average electric charge of 3.9 μCcm−2 were implanted in widely spaced defects of canine femora for 3 and 7 days. The osteoblasts were identified by immunochemical detections of osteocalcin and osteopontin. Expressions of osteocalcin and osteopontin were detected throughout the gaps between the implanted HA plates and the cut cortical bone surfaces, especially in the vicinities of the cut cortical bone surfaces and the osteoids regardless of the polarity of the induced charges. Additionally, the newly formed bone tissue that directly bonded to the negatively charged HA surfaces was lined by an osteoblast layer. As soon as 7 days after the implantation, the presence of well-developed osteoblasts suggested that the electrostatic force of the HA ceramics had conditioned the field in the biointerface zone of the polarized HA surfaces.  相似文献   

5.
Scaffold design remains a main challenge in tissue engineering due to the large number of requirements that need to be met in order to create functional tissues in vivo. Computer simulations of tissue differentiation within scaffolds could serve as a powerful tool in elucidating the design requirements for scaffolds in tissue engineering. In this study, a lattice-based model of a 3D porous scaffold construct derived from micro CT and a mechano-biological simulation of a bone chamber experiment were combined to investigate the effect of scaffold stiffness on tissue differentiation inside the chamber. The results indicate that higher scaffold stiffness, holding pore structure constant, enhances bone formation. This study demonstrates that a lattice approach is very suitable for modelling scaffolds in mechano-biological simulations, since it can accurately represent the micro-porous geometries of scaffolds in a 3D environment and reduce computational costs at the same time.  相似文献   

6.
Alloplastic calcium phosphate bone substitutes such as hydroxyapatite (HA) and tricalcium phosphate (TCP) have been studied extensively due to their composition closely resembling the inorganic phase of bone tissue. On the same way, by manipulating the HA/TCP ratio it may be possible to change the substitution rate and the bioactivity of these materials, an advantage which has brought them to clinical use in oral and orthopaedic surgery. In this work, we evaluated the histological response in bone of two biphasic calcium phosphate ceramics by varying the proportion of their components. All premolars of 6 beagle dogs were removed from both sides of the mandible. Three months later, four cylinders composed of 85% HA and 15% β-TCP (BCP 1) were implanted in the right side of mandible and other four cylinders composed of 15% HA and 85% β-TCP (BCP 2) were implanted in the left side of mandible of dogs for 4, 12 ad 26 weeks, respectively. Two dogs were used in each time point. The histological study indicated that both biphasic ceramic were biocompatible. The earlier and more quantity of bone formed in BCP 2 than in BCP 1 suggested that the first one had a higher osteoinductive potential than the second one in mandibular bone. The resorption of the phosphate phase and the subsequent migration of bone into the resorbed portions were detected in both biphasic ceramics although two processes appeared faster in BCP 2 than in BCP 1. These dates conclude that varying the components of our biphasic ceramic we improve its osteoinductive potential.  相似文献   

7.
Aim In the present study, we investigated the biodegradation of the fibers of chitosan and its acetylated derivatives in vitro and in vivo. Methods A series of chitosan fibers, with acetylation degrees of 7.7%, 21.6%, 40.9%, 61.2%, 82.5% and 93.4%, were obtained by acetylating chitosan filament with acetic anhydride, and were investigated by FT-IR analysis, elemental analysis and scanning electron microscopy analysis. Results The in vitro experimental data indicated that the degradation rate of chitosan fiber was strongly dependent on the degree of acetylation, and the degradation rate increased with an enhancement of the acetylation degree of chitosan fibers. In vivo degradation experiment evaluated by light microscopy as well as scanning electron microscopy, was studied by implanting the fibers between the two nerve stumps of the rat sciatic nerve gap (6 months). The findings demonstrated that acetylation degree could influence the degradation rate of chitosan fibers in vivo. Conclusion These results suggested that acetylated chitosan (chitin) fibers were more biodegradable than chitosan and the biodegradation rate of chitin fiber can be controlled to desirable extent by the variation of acetylation degree.  相似文献   

8.
Objective: The main objective of this study was to develop and evaluate a W/O microemulsion formulation of troxerutin to improve its oral bioavailability.

Methods: The W/O microemulsion was optimized using a pseudo-ternary phase diagram and evaluated for physical properties. In vitro MDCK cell permeability studies were carried out to evaluate the permeability enhancement effect of microemulsion, and in vivo absorption of troxerutin microemulsion in the intestine was compared with that of solution after single-dose administration (56.7?mg/kg) in male Wistar rats.

Results: The optimal formulation consisted of lecithin, ethanol, isopropyl myristate and water (23.30/11.67/52.45/12.59 w/w) was physicochemical stable and the mean droplet size was about 50.20?nm. In vitro study, the troxerutin-loaded microemulsion showed higher intestinal membrane permeability across MDCK monolayer when compared with the control solution. The W/O microemulsion can significantly promote the intestinal absorption of troxerutin in rats in vivo, and the relative bioavailability of the microemulsion was about 205.55% compared to control solution.

Conclusion: These results suggest that novel W/O microemulsion could be used as an effective formulation for improving the oral bioavailability of troxerutin.  相似文献   

9.
A detailed intracellular (IC) model describing the pharmacokinetics (PK) of gemcitabine (2',2'-difluoro-2'-deoxycytidine, dFdC) was developed and linked to a systemic plasma dFdC PK model. Based on in vivo PK, pharmacodynamic (PD) effect predictions were made using a simplified cell-cycle model (CCM). A reduced-order compartmental model describing the IC metabolism of dFdC was fit to in vitro data taken from the literature to estimate the kinetic parameters of gemcitabine triphosphate (dFdCTP) generation and elimination in leukaemia cells. For comparison with in vivo patient data, the proposed detailed IC model, coupled with the systemic PK model and the CCM PD model, was simulated; Monte Carlo randomisation of the parameter vector was used to simulate interpatient variability. This comparison of model-generated IC dFdCTP concentrations with literature values in peripheral blood mononuclear cells (PBMCs) revealed qualitative and quantitative agreement. A tumour interstitial compartment connecting the plasma and IC models allowed prediction of solid tumour dFdCTP concentration.  相似文献   

10.
Research has proven that rough surfaces improve both biologic and biomechanical responses to titanium (Ti) implants. The purpose of this study was to evaluate the correlation between the expression of bone cell-associated proteins to Vacuum Plasma-Sprayed Titanium implants (VPS-Ti) with different surface textures in vitro and the bone integration in vivo. The biological performances of the surfaces were evaluated over a period of 8 weeks using human bone marrow cell cultures and Göttinger mini pigs. Cells were cultured on VPS-Ti with two respectively different surface-roughnesses (Ra). The level of Osteoprotegerin (OPG), Osteocalcin (OC) and alkaline phosphatase activity (ALP) were evaluated. The bone integration in vivo was evaluated by histomorphological analyses. A cancellous structured titanium (CS-Ti) construct was used as reference material in both study designs. Comparison of data was conducted using the Scheffé tests and the paired t-test with Bonferroni’s correction. A comparative analysis was done to measure the degree of association between the in vitro and in vivo data. A total amount of OC was significantly increased for VPS-Ti for cells cultured on both VPS-Ti and CS-Ti, while OPG was only detectable after 8 weeks without any significant differences. The ALP activity on all surfaces was not statistically increased. For VPS-Ti with Ra ranging from 0.025 mm up to 0.059 mm, bone integration response was increased, but there was no statistical difference between the VPS-Ti. Expression of OPG, OC and ALP correlated with the histomorphological data over the 8-week period. The in vitro data suggest the superiority of VPS-Ti over CS-Ti, but more importantly, the biocompatibility of testing an in vitro model to predict the outcome and possible integration of implants in vivo.  相似文献   

11.
To obtain bioceramics with good osteoinductive ability and mechanical strength, graded hydroxyapatite–zirconia (HA–ZrO2) composite bioceramics were prepared in this work. The biocompatibility of the bioceramics was investigated in vitro based on acute toxicity and cytotoxicity tests and hemolysis assay. Results showed the studied graded HA–ZrO2 had little toxicity to mouse and L929 mouse fibroblasts. Also, hemolysis assay indicated a good blood compatibility of the bioceramics. Based on the results of in vitro tests, animal experiments were performed on white New Zealand rabbits by implantation into hip muscles and femur. It was found that the graded HA–ZrO2 composite bioceramics exhibited superior osteoinductive ability, which may be a promising bioceramics implant.  相似文献   

12.
To evaluate the ability of Mg–6Zn to replace titanium nails in the reconstruction of the intestinal tract in general surgery, we compared the Mg–6Zn and titanium implants with respect to their effects on rat’s intestinal tract by biochemical, radiological, pathological and immunohistochemical methods. The results indicated that Mg–6Zn implants started to degrade at the third week and disintegrate at the fourth week. No bubbles appeared, which may be associated with intestinal absorption of the Mg–6Zn implants. Pathological analyses (containing liver, kidney and cecum tissues) and biochemical measurements, including serum magnesium, creatinine, blood urea nitrogen, glutamic–pyruvic–transaminase and glutamic–oxaloacetic–transaminase proved that degradation of Mg–6Zn did not harm the important organs, which is an improvement over titanium implants. Immunohistochemical results showed that Mg–6Zn could enhance the expression of transforming growth factor-β1. Mg–6Zn reduced the expression of tumor necrosis factor at different stages. In general, our study demonstrates that the Mg–6Zn alloy had good biocompatibility in vivo and performed better than titanium at promoting healing and reducing inflammation. It may be a promising candidate for stapler pins in intestinal reconstruction.  相似文献   

13.
14.
The objective of this study is to develop, in vitro and in vivo evaluation of novel approaches for controlled release of paroxetine hydrochloride hemihydrate (PHH) in comparison to patented formulation PAXIL CR® tablets of GlaxoSmithKline (Geomatrix? technology). In one of the approaches, hydrophilic core matrix tablets containing 85% of the dose were prepared and further coated with methacrylic acid copolymer to delay the release. An immediate release coating of 15% was given as top coat. The tablets were further optionally coated using ethyl cellulose. In the second approach, hydrophobic matrix core tablets containing metharylic acid copolymer were prepared. In the third approach, PHH was granulated with enteric polymer and further hydrophobic matrix core tablets were prepared. The effect of polymer concentration, level of enteric coating on drug release was evaluated by in vitro dissolution study by varying dissolution apparatus and the rotation speeds. It was found that increase in concentration of high viscosity hydroxypropylmethylcellulose (HPMC) resulted in reduction of the release rate. The drug release was observed to be dependent on the level of enteric coating and ethyl cellulose coating, being slower at increased coating. The release mechanism of PHH followed zero-order shifting to dissolution dependent by the increase of HPMC content. The formulation was stable without change in drug release rate. In vivo study in human volunteers confirmed the similarity between test and innovator formulations. In conclusion, HPMC-based matrix tablets, which were further coated using methacrylic acid copolymer, were found to be suitable for the formulation of single layer-controlled release PHH.  相似文献   

15.
Chitosan–gelatin polyelectrolyte complexes were fabricated and evaluated as tissue engineering scaffolds for cartilage regeneration in vitro and in vivo. The crosslinker for the gelatin component was selected among glutaraldehyde, bisepoxy, and a water-soluble carbodiimide (WSC) based upon the proliferation of chondrocytes on the crosslinked gelatin. WSC was found to be the most suitable crosslinker. Complex scaffolds made from chitosan and gelatin with a component ratio equal to one possessed the proper degradation rate and mechanical stability in vitro. Chondrocytes were able to proliferate well and secrete abundant extracellular matrix in the chitosan–gelatin (1:1) complex scaffolds crosslinked by WSC (C1G1WSC) compared to the non-crosslinked scaffolds. Implantation of chondrocytes-seeded scaffolds in the defects of rabbit articular cartilage confirmed that C1G1WSC promoted the cartilage regeneration. The neotissue formed the histological feature of tide line and lacunae in 6.5 months. The amount of glycosaminoglycans in C1G1WSC constructs (0.187 ± 0.095 μg/mg tissue) harvested from the animals after 6.5 months was 14 wt.% of that in normal cartilage (1.329 ± 0.660 μg/mg tissue). The average compressive modulus of regenerated tissue at 6.5 months was about 0.539 MPa, which approached to that of normal cartilage (0.735 MPa), while that in the blank control (3.881 MPa) was much higher and typical for fibrous tissue. Type II collagen expression in C1G1WSC constructs was similarly intense as that in the normal hyaline cartilage. According to the above results, the use of C1G1WSC scaffolds may enhance the cartilage regeneration in vitro and in vivo.  相似文献   

16.
The aim of this study was to develop Cyclosporin A (CsA) sustained-release pellets which could maintain CsA blood concentration within the therapeutic window throughout dosing interval and to investigate the in vitro–in vivo correlation (IVIVC) in beagle dogs. The CsA sustained-release pellets (CsA pellets) were prepared by a double coating method and characterized in vitro as well as in vivo. Consequently, the CsA pellets obtained were spherical in shape, with a desirable drug loading (7.18?±?0.17?g/100?g), good stability and showed a sustained-release effect. The Cmax, Tmax and AUC0–24 of CsA pellets from the in vivo pharmacokinetics evaluation was 268.22?±?15.99?ng/ml, 6?±?0?h and 3205.00?±?149.55?ng·h/ml, respectively. Compared with Neoral®, CsA pellets significantly prolonged the duration of action, reduced the peak blood concentration and could maintain a relatively high concentration level till 24?h. The relative bioavailability of CsA pellets was 125.68?±?5.37% that of Neoral®. Moreover, there was a good correlation between the in vitro dissolution and in vivo absorption of the pellets. In conclusion, CsA pellets which could ensure a constant systemic blood concentration within the therapeutic window for 24?h were prepared successfully. Meanwhile, this formulation possessed a good IVIVC.  相似文献   

17.
Synthetic polymer meshes are widely applied in the modern surgical approach for repairing abdominal wall defects. The implanted material is often observed leading to post-operative complications such as deficient abdominal wall mobility and adhesion formation with the abdominal cavity and/or abdominal organs. However, the functioning of the implant is primarily affected by the wound healing process guided by inflammatory events occurring at the tissue–material interface. This could presumably be influenced by the physicochemical properties of the polymer. With regard to it, the cellular and molecular processes involved in the successful restoration of the abdominal wall function are poorly understood. The present in vivo study, therefore, exemplary investigated in a rat model, the commercially available polymer-meshes Prolene® (polypropylene, PP), Mersilene® (polyester, PE) and Vicryl® (polyglactin 910), as well as new mesh variants consisting either of PP (EB) or a combination of PP and polyglactin 910 (A plus or Vypro®). The implanted material was evaluated by light and electron microscopy, immunohistochemistry as well as morphometry over an implantation period of 90 days. The data show that polymers induce heat shock protein (HSP)70, and its expression at the interface correlates inversely with the activity of the inflammatory reaction in vivo. Further, an ascent in HSP70 expression parallels the increasing implantation period and evolving foreign-body granulomas. Accordingly, a major role for HSP70 in modulating the local acceptance of polymers and as an additional marker for in vivo testing of polymers is suggestive. ©©2000 Kluwer Academic Publishers  相似文献   

18.
The purpose of this study was to evaluate the potential of a newly modified cyclodextrin derivative, water-soluble β-cyclodextrin-epichlorohydrin polymer (β-CDP), as an effective drug carrier to enhance the dissolution rate and oral bioavailability of glipizide as a poorly water-soluble model drug. Inclusion complexes of glipizide with β-CDP were prepared by the co-evaporation method and characterized by phase solubility, dissolution, and differential scanning calorimetry. The solubility curve was classified as type A(L), which indicated the formation of 1:1 complex between glipizide and β-CDP. β-CDP had better properties of increasing the aqueous solubility of glipizide compared with HP-β-CD. The dissolution rate of drug from the β-CDP complexes was significantly greater than that of the corresponding physical mixtures indicating that the formation of amorphous complex increased the solubility of glipizide. Moreover, the increment in drug dissolution rate from the glipizide/β-CDP systems was higher than that from the corresponding ones with HP-β-CD, which indicated that β-CDP could provide greater capability of solubilization for poorly soluble drugs. Furthermore, in vivo study revealed that the bioavailability of glipizide was significantly improved by glipizide /β-CDP inclusion complex after oral administration to beagle dogs.  相似文献   

19.
Poly(l-lactide-co-glycolide) (PLGA) was synthesized using a biocompatible initiator, zirconium acetylacetonate. In vitro and in vivo degradation properties of PLGA films (produced by solvent casting, 180 μm thick) and PLGA scaffolds (produced by an innovated solvent casting and particulate leaching, 3 mm thick) were evaluated. The samples were either submitted for degradation in phosphate buffered saline (PBS) at 37 °C for 30 weeks, or implanted into rat skeletal muscles for 1, 4, 12, 22 and 30 weeks. The degradation was monitored by scanning electron microscopy, atomic force microscopy, weight loss, and molecular weight changes (in vitro), and by microscopic observations of the materials’ morphology after histological staining with May-Grunwald-Giemsa (in vivo). The results show that the films in both conditions degraded much faster than the scaffolds. The scaffolds were dimensionally stable for 23 weeks, while the films lost their integrity after 7 weeks in vitro. The films’ degradation was heterogenous—degradation in their central parts was faster than in the surface and subsurface regions due to the increased concentration of the acidic degradation products inside. In the scaffolds, having much thinner pore walls, heterogenous degradation due to the autocatalytic effect was not observed.  相似文献   

20.
It has been proved that some material-dependent calcium phosphate ceramics have intrinsic potentials to induce osteogenesis. But there is little literature concerning about the tissue response in long-term. The aim of this study is to evaluate the safety of the osteoinductive biocreamics and the stability of the newly formed bone after long-term tissue response. Porous calcium phosphate ceramics rods which contain hydroxyapatite (HA) and β-tricalcium phosphate (β-TCP) were implanted in the dorsal muscles of Banna Minipig Inbreding Line. After 4.5 years, all the implanted rods with surrounding tissues were harvested and stained with hematoxylin and eosin for histological observation. The 7 months’ rods were also harvested as short-term comparison. The histological results showed that compared with the short-term rods, amount of bone tissue formed after 4.5 years. And the newly formed bone in this bioceramics neither disappeared nor gave rise to uncontrolled growth. The bone growth in this bioceramics seemed to be self-confined. The surrounding soft tissues were normal and no tumor cell was found. We conclude that instead of disappearing or giving rise to out of control, the induced bone tissue trends to be further matured. And this bioceramics thus might have potentials in future clinical use.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号