首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Objective: To develop and characterize self-nanoemulsifying drug delivery system (SNEDDS) of the poorly water-soluble drug, glibenclamide (GBD). Methods: Solubility of GBD was determined in various vehicles. Phase diagrams were constructed to identify efficient self-emulsification region using oils, surfactants, and cosurfactants in aqueous environment. Formulations were assessed for drug content, spectroscopic clarity, emulsification time, contact angle, zeta potential, particle size, and dissolution studies. On the basis of similarity and dissimilarity of particle size distribution, formulations were further characterized using principal component analysis and agglomerative hierarchy cluster analysis. Results: Among the formulations prepared and evaluated, optimized formulation showed mean particle size between 15.65 and 32.70 nm after 24 hour postdilution in various media. Dilution volume had no significant effect on particle size. Transmission electron microscopy of these formulations confirmed the spherical shape of globules with no signs of coalescence of globules and precipitation of drug. The relevance of difference in t50% and percent dissolution efficiency were evaluated statistically by two-way ANOVA. Infrared spectroscopy, differential scanning calorimetry, and X-ray diffraction studies indicated compatibility between drug, oil, and surfactants. Conclusions: The results of this study indicate that the self-nanoemulsifying drug delivery system of GBD, owing to nanosize, has potential to enhance its absorption and without interaction or incompatibility between the ingredients.  相似文献   

2.
Background: Multiparticulate drug delivery systems, such as pellets, are frequently used as they offer therapeutic advantages over single-unit dosage forms. Aim: Development of porous pellets followed by evaluation of potential drug loading techniques. Method: Porous microcrystalline pellets were manufactured and evaluated as drug delivery system. Pellets consisting of Avicel PH 101 and NaCl (70%, w/w) were prepared by extrusion/spheronization. The NaCl fraction was extracted with water and after drying porous pellets were obtained (33.2% porosity). Immersion of the porous pellets in a 15% and 30% (w/v) metoprolol tartrate solution, ibuprofen impregnation via supercritical fluids and paracetamol layering via fluidized bed coating were evaluated as drug loading techniques. Results: Raman spectroscopy revealed that immersion of the pellets in a drug solution and supercritical fluid impregnation allowed the drug to penetrate into the porous structure of the pellets. The amount of drug incorporated depended on the solubility of the drug in the solvent (water or supercritical CO2). Drug release from the porous pellets was immediate and primarily controlled by pure diffusion. Conclusion: The technique described in this research work is suitable for the production of porous pellets. Drug loading via immersion the pellets in a drug solution and supercritical fluid impregnation resulted in a drug deposition in the entire pellet in contrast to fluid bed layering where drugs were only deposed on the pellet surface.  相似文献   

3.
4.
Background: Developing a sustained release drug to cure arthritis is needed. Sinomenine (SIN) is abstracted from sinomenium acutum and widely used in the treatment of various rheumatism and arrhythmia with few side effects. The primary aim of this study is to develop SIN microcapsules with polyelectrolyte multilayers for controlled drug release. Method: SIN microcrystals were encapsulated with chitosan, gelatin, and alginate by layer-by-layer technique, such as (gelatin/alginate)4 and (chitosan/alginate)6. The size distribution, zeta-potential, stability, and morphology of the microcapsules were characterized by a particle size analyzer, zetasizer, ultraviolet spectroscopy, and transmission electron microscope, respectively. The in vitro controlled release pattern of SIN was studied using a diffusion cell assembly at physiological pH of 6.8 or 1.4. Results: Light stability of these microcapsules was improved after microencapsulation. Compared with release rate of the SIN microcapsules coated by the poly(dimethyldiallyl ammonium chloride)/alginate and gelatin/alginate multilayers, release rate of the SIN microcapsules coated with chitosan/alginate multilayers was fast. Release rate progressively decreased with the increase of chitosan/alginate bilayer number and the decrease of pH value of release medium. Conclusion: These novel SIN microcapsules may be developed into oral controlled drug delivery for rheumatism and arthritis.  相似文献   

5.
Carbomers are extensively being used in controlled drug delivery systems (CDDS). They are also finding numerous applications in oral mucoadhesive drug delivery because of their ability to interact with the mucus glycoprotein and to remain localized to a specific site. The present review aims at giving an insight into the potential application of carbomers in mucoadhesive CDDS. This review deals with the physicochemical properties of carbomers and various mechanisms of mucoadhesion. The mechanism for the release of the drug, both water soluble and water insoluble, is discussed. The use of carbomers in oral delivery of peptides or protein-based drugs is also covered.  相似文献   

6.
Background: The purpose of this work was to develop novel pressure-sensitive adhesives (PSAs) for transdermal drug-delivery systems (TDDS) with proper adhesive properties, hydrophilicity, biocompatibility and high drug loading. Method: Polyethyleneglycol-modified polyurethane PSAs (PEG-PU-PSAs) were synthesized by prepolymerization method with PEG-modified co-polyether and hexamethylene diisocyanate. The effects of reaction temperature, catalyst, ratios of NCO/OH, co-polyether composition, and chain extender were investigated. Drug loading was studied by using thiamazole (hydrophilic drug), diclofenac sodium (slightly hydrophilic drug), and ibuprofen (lipophilic drug) as model drugs. In vitro drug-release kinetics obtained with Franz diffusion cell and dialysis membrane. Results: The results showed that when reaction temperature at 80°C, weight percentage of stannous octoate as catalyst at 0.05%, ratio of NCO/OH at 2.0–2.2, ratio of PEG/polypropylene glycol (PPG)/polytetramethylene ether glycol (PTMG) at 30/25–30/50–55, and weight percentage of glycol as chain extender at 4.5%, PEGPU-PSAs synthesized performed well on adhesive properties. Actually, PEG on the main chain of the PU could improve the hydrophilicity of PSAs, whereas PPG and PTMG could offer proper adhesive properties. Skin compatibility test on volunteers indicated that PEG-PU-PSAs would not cause any skin irritations. All the model drugs had excellent stabilizations in PEG-PU-PSAs. In vitro drug-release kinetics demonstrated that the drug release depended on drug-loading level and solubility of the drug. Conclusion: These experimental results indicated that PEG-PU-PSAs have good potential for applications in TDDS.  相似文献   

7.
Objective: The present investigation was aimed at optimizing of estradiol (E2) loaded l-amino acid derivatives organogel formulations resulting in improved the high initial release problems and sustained release of E2.

Methods: The visco-elastic properties of blank organogels were measured by rheometer. The E2 organogel formulations were optimized using a central composite design. Also, the effect of gelator structure and composition of the gel formulations on release behavior (in vitro and in vivo) had been studied.

Results: The change of the gelator structure could affect significantly the stiffness of the implants. The release behavior of gel without N-Methyl-2-pyrrolidinone (NMP) was controlled by gel corrosion only. While the drug release of the gel with NMP was controlled by both corrosion and diffusion. The high initial release problems of the organogels were improved by optimizing the formulations. The system consisting by N-Lauroyl l-lysine methyl ester (LLM) derivative in the oil indicated the lowest initial drug release, showed a much lower blood drug level and maintained a steady state for nearly 1 month.

Conclusion: Organogels based on l-lysine methyl ester derivative were ideal carriers for long-term parenteral administration of E2.  相似文献   

8.
The objective of this study was to investigate the in vitro and in vivo drug release performance of a rupturable multiparticulate pulsatile system, coated with aqueous polymer dispersion Aquacoat® ECD. Acetaminophen was used as a model drug, because in vivo performance can be monitored by measuring its concentration in saliva. Drug release was typical pulsatile, characterized by lag time, followed by fast drug release. Increasing the coating level of outer membrane lag time was clearly delayed. In vitro the lag time in 0.1 N HCl was longer, compared to phosphate buffer pH 7.4 because of ionisable ingredients present in the formulation (crosscarmelose sodium and sodium dodecyl sulphate). In vitro release was also longer in medium with higher ion concentration (0.9% NaCl solution compared to purified water); but independent of paddle rotation speed (50 vs.100 rpm). Macroscopically observation of the pellets during release experiment confirms that the rupturing of outer membrane was the main trigger for the onset of release. At the end of release outer membrane of all pellets was destructed and the content completely released.

However, pellets with higher coating level and correspondingly longer lag time showed decreased bioavailability of acetaminophen. This phenomenon was described previously and explained by decreased liquid flow in the lower part of intestine. This disadvantage can be considered as a limitation for drugs (like acetaminophen) with high dose and moderate solubility; however, it should not diminish performance of the investigated system in principle.  相似文献   

9.
Objective: Difference of pH that exists between the skin surface and blood circulation can be exploited for transdermal delivery of drug molecules by loading drug into pH-sensitive polymer. Eudragit S100 (ES100), a pH-sensitive polymer having dissolution profile above pH 7.4, is used in oral, ocular, vaginal and topical delivery of drug molecules. However, pH-sensitive potential of this polymer has not been explored for transdermal delivery. The aim of this research work was to exploit the pH-sensitive potential of ES100 as a nanocarrier for transdermal delivery of model drug, that is, Piroxicam.

Methods: Simple nanoprecipitation technique was employed to prepare the nanoparticles and response surface quadratic model was applied to get an optimized formulation. The prepared nanoparticles were characterized and loaded into Carbopol 934 based hydrogel. In vitro release, ex vivo permeation and accelerated stability studies were carried out on the prepared formulation.

Results: Particles with an average size of 25–40?nm were obtained with an encapsulation efficiency of 88%. Release studies revealed that nanoparticles remained stable at acidic pH while sustained release with no initial burst effect was observed at pH 7.4 from the hydrogel. Permeation of these nanocarriers from hydrogel matrix showed significant permeation of Piroxicam through mice skin.

Conclusion: It can be concluded that ES100 based pH-sensitive nanoparticles have potential to be delivered through transdermal route.  相似文献   


10.
水滑石作为药物载体--萘普生的插层和缓释   总被引:7,自引:0,他引:7  
水滑石(LDHs)是由带正电荷类水镁石层和层间的可交换阴离子组成的阴离子型粘土化合物,由于它的生物适应性,能够以它为主体,以药物为客体,插层组装成超分子结构复合物.抗炎药萘普生采用共沉淀法一步插层进入LDHs,用X射线衍射、红外光谱及热分析方法表征了超分子结构,表明层间距离扩大了,即萘普生已经插层组装成功,并且以单层、垂直作用在层间.萘普生柱撑水滑石的药物释放度在模拟肠液(pH7.4的缓冲液)条件下测定,结果表明萘普生柱撑水滑石释放速度降低,具有缓释作用,说明药物--无机混合物材料能够用作有效的药物传输系统.  相似文献   

11.
Context: One among many strategies to prolong gastric residence time and improve local effect of the metronidazole in stomach to eradicate Helicobacter pylori in the treatment of peptic ulcer was floating drug delivery system particularly effervescent gastroretentive tablets.

Objective: The objective of this study was to prepare and evaluate, effervescent floating drug delivery system of a model drug, metronidazole.

Methods: Effervescent floating drug delivery tablets were prepared by wet granulation method. A three-factor, three levels Box-Behnken design was adopted for the optimization. The selected independent variables were amount of hydroxypropyl methylcellulose K 15M (X1), sodium carboxy methylcellulose (X2) and NaHCO3 (X3). The dependent variables were floating lag time (YFLT), cumulative percentage of metronidazole released at 6th h (Y6) and cumulative percentage of metronidazole released at 12th h (Y12). Physical properties, drug content, in vitro floating lag time, total floating time and drug release behavior were assessed.

Results: YFLT range was found to be from 1.02 to 12.07?min. The ranges of other responses, Y6 and Y12 were 25.72?±?2.85 to 77.14?±?3.42 % and 65.47?±?1.25 to 99.65?±?2.28 %, respectively. Stability studies revealed that no significant change in in vitro floating lag time, total floating time and drug release behavior before and after storage.

Conclusion: It can be concluded that a combination of hydroxypropyl methylcellulose K 15M, sodium carboxy methylcellulose and NaHCO3 can be used to increase the gastric residence time of the dosage form to improve local effect of metronidazole.  相似文献   

12.
In the current studies attempts were made to prepare hydrogels by chemical modification of pectin with ethanolamine (EA) in different proportions. Chemically modified pectin products were crosslinked with glutaraldehyde reagent for preparing hydrogels. The hydrogels were characterized by Fourier transform infrared spectroscopy (FTIR), organic elemental analysis, X-ray diffraction studies (XRD), swelling studies, biocompatibility and hemocompatibility studies. Mechanical properties of the prepared hydrogels were evaluated by tensile test. The hydrogels were loaded with salicylic acid (used as a model drug) and drug release studies were done in a modified Franz’s diffusion cell. FTIR spectroscopy indicated the presence of primary and secondary amide absorption bands. XRD studies indicated increase in crystallinity in the hydrogels as compared to unmodified pectin. The degree of amidation (D A) and molar and mass reaction yields (Y M and Y N) was calculated based on the results of organic elemental analysis. The hydrogels showed good water holding properties and were found to be compatible with B-16 melanoma cells & human blood.  相似文献   

13.
Local antimicrobial delivery is a potential area of research conceptualized to provide alternative and better methods of treatment for cases, as osteomyelitis where avascular zones prevent the delivery of drugs from conventional routes of administration. Drug-loaded polymers and calcium phosphates as hydroxyapatites have been tried earlier. Bioactive glasses are bone-filling materials used for space management in orthopedic and dental surgery. A new bioactive glass (SSS2) was synthesized and fabricated into porous scaffold with a view to provide prolonged local delivery of gatifloxacin and fluconazole as suitable for the treatment of osteomyelitis. The new SSS2 was characterized by Fourier transform infrared (FTIR) and X-ray diffraction (XRD) analyses. In addition, the bioactivity of the SSS2 glass and resulting scaffold was examined by in vitro acellular method and ascertained by FTIR and XRD. The pore size distribution was analysed by mercury intrusion porosimetry and the release of drugs from scaffolds were studied in vitro. The glass and the resulting scaffolds were bioactive indicating that they can bond with bone in vivo. The scaffolds were porous with pores predominantly in the range of 10–60 µm, released the drugs effectively for 6 weeks and deemed suitable for local delivery of drugs to treat osteomyelitis.  相似文献   

14.
Tacrolimus (FK 506), a poorly soluble immunosuppressant is currently formulated in nonaqueous vehicle containing hydrogenated castor oil derivative for intravenous administration. Hydrogenated castor oil derivatives are associated with acute anaphylactic reactions. This proposes to overcome the problems of poor aqueous solubility of the drug and the toxicity associated with currently used excipients by the development of a new parenterally acceptable formulation using self-microemulsifying drug delivery system (SMEDDS). Solubility of FK 506 in various oils, surfactants, and cosurfactants was determined to identify SMEDDS components. Phase diagrams were constructed at different ratios of surfactants:cosurfactant (K(m)) to determine microemulsion existence area. Influence of oily phase content, K(m), aqueous phase composition, dilution, and incorporation of drug on mean globule size of microemulsions was studied. SMEDDSs were developed using ethyl oleate as oily phase and Solutol HS 15 as surfactant. Glycofurol was used successfully as a cosurfactant. Developed SMEDDS could solubilize 0.8% (wt/wt) FK 506 and on addition to aqueous phase could form spontaneous microemulsion with mean globule size < 30 nm. The resulting microemulsion was iso-osmotic, did not show any phase separation or drug precipitation even after 24 h, and exhibited negligible hemolytic potential to red blood cells.  相似文献   

15.
A transdermal drug delivery system of diclofenac was developed for prolonged and controlled release of diclofenac. The designed system essentially based on polymeric pseudolatex dispersion. The formulation variables that could effect the formulation stability vis a vis drug release were studied. To achieve the desired release rate, different combination of hydrophilic and hydrophobic polymer were used for the preparation of pseudolatex system. The designed system exhibited linear relationship between drug release (Q) V/s square root of time (t0.5). The product having skin permeability rate 0.188 mg/h/cm was selected for the in vitro anti-inflammatory activity and in vivo evaluation. The system could maintained a constant and effective plasma level for 24 hours. The effective drug plasma concentration was monitored periodically. The study revealed that designed pseudolatex transdermal drug delivery system of diclofenac could be used successfully with improved performance and hold promise for further studies.  相似文献   

16.
The purpose of this study was to develop a self-microemulsifying drug delivery system (SMEDDS) to improve the oral bioavailability of Berberine hydrochloride (BBH), an important bioactive compound from Chinese Medicines with poor water solubility. Pseudoternary phase diagrams were constructed using oil, surfactant and co-surfactant types to identify the efficient self-microemulsification region. SMEDDS was characterized by morphological observation, droplet size, zeta-potential determination, stability, in vitro release and in vivo bioavailability study. The optimal formulation with the best self-microemulsifying and solubilization ability consisted of 40% (w/w) of ethyl linoleate and oleic acid (2:1), 35% (w/w) Tween-80 and 25% (w/w) glycerol. The SMEDDS of BBH could exhibit good stability. In vitro release test showed a complete release of BBH from SMEDDS was in 5 h. In vivo results indicated that the peak plasma concentration (Cmax) and the area under the curve (AUC0→12 h) of SMEDDS of BBH were higher than the commercial tablet by 163.4% and 154.2%, respectively. The relative bioavailability of SMEDDS of BBH was enhanced about 2.42-fold compared with the commercial tablet in rats. The study confirmed that the SMEDDS formulation could be used as a possible alternative to traditional oral formulations of BBH to improve its bioavailability.  相似文献   

17.
Context: Advancement in technology has transformed the conventional dosage forms to intelligent drug delivery systems. Such systems are helpful for targeted and efficient drug delivery with minimum side effects. Drug release from these systems is governed and controlled by external stimuli (pH, enzymes, ions, glucose, etc.). Polymeric biomaterial having stimuli-responsive properties has opened a new area in drug delivery approach.

Objective: Potential of a polysaccharide (rhamnogalacturonan)-based hydrogel from Linseeds (Linum usitatissimum L.) was investigated as an intelligent drug delivery material.

Materials and methods: Different concentrations of Linseed hydrogel (LSH) were used to prepare caffeine and diacerein tablets and further investigated for pH and salt solution-responsive swelling, pH-dependent drug release, and release kinetics. Morphology of tablets was observed using SEM.

Results: LSH tablets exhibited dynamic swelling–deswelling behavior with tendency to swell at pH 7.4 and in deionized water while deswell at pH 1.2, in normal saline and ethanol. Consequently, pH controlled release of the drugs was observed from tablets with lower release (<10%) at pH 1.2 and higher release at pH 6.8 and 7.4. SEM showed elongated channels in swollen then freeze-dried tablets.

Discussion: The drug release was greatly influenced by the amount of LSH in the tablets. Drug release from LSH tablets was governed by the non-Fickian diffusion.

Conclusions: These finding indicates that LSH holds potential to be developed as sustained release material for tablet.  相似文献   


18.
Aim: In this study, self-emulsifying drug delivery system (SEDDS) for oral delivery of opioid peptide dalargin were developed and characterized in vitro.

Methods: Dalargin lipophilicity was increased by O-esterification of tyrosine OH group, hydrophobic ion pairing, or a combination thereof. Distribution coefficients (log?D) of lipidized dalargin derivatives were determined. Then, dalargin was incorporated in chosen SEDDS, namely SEDDS-1, composed of 50% Capmul 907, 40% Cremophor EL, and 10% propylene glycol and comparatively more lipophilic SEDDS-2 composed of 30% Captex 8000, 30% Capmul MCM, 30% Cremophor EL, and 10% propylene glycol. Additionally, SEDDS were characterized regarding droplet size, polydispersity index (PDI), cloudy point, physical stability and stability against pancreatic lipase. Furthermore, mucus permeating properties of SEDDS and their ability to protect the incorporated dalargin against proteolysis by trypsin, α-chymotrypsin, elastase, simulated gastric fluid (SGF), and simulated intestinal fluid (SIF) were evaluated.

Results: The highest dalargin drug payload of 4.57% in SEDDS-2 was achieved when dalargin palmitate (pDAL) was ion paired with sodium dodecyl sulfate (SDS) in molar ratio 1:1. Moreover, SEDDS-1 and SEDDS-2 had a narrow droplet size distribution with average droplet sizes of 42.1 and 33.1?nm with PDI of 0.042 and 0.034, respectively. Lipolysis study showed that within 30?min 78.5% of SEDDS-1 and 92.1% of SEDDS-2 were digested. In addition, both SEDDS exhibited mucus permeating properties as well as a protective effect against enzymatic degradation by trypsin, α-chymotrypsin, elastase, SGF and SIF.

Conclusion: The results of this study suggest that the developed SEDDS could be considered for oral opioid peptide delivery.  相似文献   

19.
Preparation and in vitro/in vivo evaluation of risperidone elementary osmotic pump (RIS-EOP) formulations were investigated. A method for the preparation of RIS-EOP tablets was developed by modulating RIS solubility with citric acid. The influence of osmotic agents and the compositions of semipermeable membrane on drug release profiles was evaluated. The formulation of RIS-EOP was optimized by orthogonal design. The in vitro release profile of the optimum formulation achieved to deliver RIS at an approximate zero-order up to 12?h. The pharmacokinetic profiles of RIS-EOP were evaluated compared with immediate release tablets in beagle dogs. The mean tmax and mean residence time of RIS-EOP for RIS and its active metabolite, 9-hydroxyrisperidone, were remarkably longer, compared with immediate release tablets. These results corroborated prolonged release of RIS from EOP formulations. Moreover, drug plasma levels with lower fluctuations could be achieved with RIS-EOP tablets. These results suggested that increasing drug solubility by adding or reacting with alkali/acid might be used for the preparation of EOP tablets of certain poorly water-soluble drugs.  相似文献   

20.
Biodegradable polymers are compatible, permeable and nontoxic, thus they can provide a useful tool for drug delivery or tissue engineering. These polymers can form hydrogels, which are suitable vehicles for different types of materials e.g. drugs, bioactive molecules or cells. In the case of dentistry, photopolymerization is an obvious method to obtain in situ useable devices which can provide a more efficient way of tailoring drug release. A hydrogel system was developed based on poly-gamma-glutamic acid that was modified with methacryloyl groups to achieve this purpose. The resulting new reactive structure was proved by NMR spectroscopy. The swelling ratio of this type of hydrogel has been found remarkable, over 300 % after 24 h, and it can release 5 ng/mm2 metronidazole. The prepared hydrogels were nontoxic as viability, cytotoxicity tests and cell morphology investigations proved it. These results render this model system an excellent candidate for use as an in situ curing local drug delivery device. The new photoactive system can be utilized in the treatment of periodontal diseases or raising the effectiveness of drugs used only in the minimal effective dose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号