首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
Abstract

Diclofenac sodium (DS) controlled release solid dispersions were prepared by spray drying using ethylcellulose (EC), methacrylic acid copolymer (Eudragit), chitosan, hydroxypropyl methylcellulose (HPMC), and carbomer as single carriers and EC-chitosan as combined carriers. Among solid dispersions of 3:1 drugsingle carrier, the system containing chitosan exhibited the slowest dissolution followed by the systems containing Eudragit, EC, HPMC, and carbomer, respectively. Combined carriers of EC-chitosan exhibited more dissolution retarding effect than single carrier of EC or chitosan. An Hadamard matrix H[8] was employed to estimate the main effects of four parameters: spray feeding volume and contents of absolute ethanol, EC, and chitosan. Optimization strategy using multiple linear regression and a feasibility computer program was utilized to obtain the optimum quantities of the four parameters that would result in a required DS controlled release solid dispersion. The validation of the optimum DS solid dispersion was confirmed by statistical analysis. The optimized 10: (2.5+0.02) DS:(EC+chitosan) controlled release solid dispersion exhibited a dissolution profile that was well fitted to Higuchi model.  相似文献   

2.
Context: Manidipine (MDP) is generally used clinically as an antihypertensive agent; however, the bioavailability of orally administered MDP is limited due to their very low water solubility.

Objective: The objectives of this research were, therefore, to increase the solubility of MDP by the formation of ternary solid dispersions (tSD) with polyethylene glycol 4000 (PEG4000) and copovidone and to improve their stability.

Methods: Solid ternary phase diagram was constructed to find homogeneous solid dispersion region after melting and solidifying at low temperature with different quenching substances. The pulverized powder of solid dispersions was then determined, for their physicochemical properties, by differential scanning calorimetry, powder X-ray diffractometry, Fourier transform infrared (FTIR) spectroscopy and hot stage microscopy. The solubility and dissolution of MDP from the tSD were investigated. The physical stability of tSD was also determined under accelerated condition at 40?°C/75% relative humidity (RH) for 6 months.

Results and discussion: The results showed that MDP was molecularly dispersed in PEG4000 and copovidone when the tSD was created from homogeneous region of solid ternary phase diagram. FTIR results confirmed that strong hydrogen bonding was presented between MDP and copovidone, leading to a significant increase in the solubility and dissolution of MDP. After storage at accelerated condition (40?°C/75%RH) for 6 months, the tSD still showed a good appearance and high solubility.

Conclusion: The results of this study suggest that tSD prepared by melting has promising potential for oral administration and may be an efficacious approach for improving the therapeutic potential of MDP.  相似文献   

3.
Objective: A novel tablet formulation containing an amorphous solid dispersion (ASD) of elacridar hydrochloride was developed with the purpose to resolve the drug’s low solubility in water and to conduct proof-of-concept clinical studies.

Significance: Elacridar is highly demanded for proof-of-concept clinical trials that study the drug’s suitability to boost brain penetration and bioavailability of numerous anticancer agents. Previously, clinical trials with elacridar were performed with a tablet containing elacridar hydrochloride. However, this tablet formulation resulted in poor and unpredictable absorption which was caused by the low aqueous solubility of elacridar hydrochloride.

Methods: Twenty four different ASDs were produced and dissolution was compared to crystalline elacridar hydrochloride and a crystalline physical mixture. The formulation with highest dissolution was characterized for amorphicity. Subsequently, a tablet was developed and monitored for chemical/physical stability for 12 months at +15–25?°C, +2–8?°C and ?20?°C.

Results: The ASD powder was composed of freeze dried elacridar hydrochloride–povidone K30–sodium dodecyl sulfate (1:6:1, w/w/w), appeared fully amorphous and resulted in complete dissolution whereas crystalline elacridar hydrochloride resulted in only 1% dissolution. The ASD tablets contained 25?mg elacridar hydrochloride and were stable for at least 12 months at –20?°C.

Conclusions: The ASD tablet was considered feasible for proof-of-concept clinical studies and is now used as such.  相似文献   

4.
Abstract

Furosemide-PVP solid dispersion systems were prepared by co-evaporation and freeze-drying methods. The X-ray diffraction patterns indicated that furosemide in the coprecipitates was in amorphous form. The dissolution rate of furosemide was markedly increased in these solid dispersion systems. The increase in dissolution was a function of the ratio of drug to PVP used. With 1:7 ratio the best result was obtained. The 49000 mol. wt. PVP yielded the most rapid furosemide dissolution. Dissolution studies have shown that coprecipitate of furosemide-PVP (1:7) is the best combination. Factors contributing to the enhancement of furosemide' dissolution from the dispersion in PVP were discussed. The increase in release rates was attributed to the increased wettability, coacervate formation and the complexation.

The effect of aging on furosemide-PVP solid dispersions has been investigated. After storage, under the different humidities (55%, 70% and 85% RH) coprecipitates showed no change in either dissolution rate or X-ray diffraction patterns.  相似文献   

5.
Abstract

The purpose of this study was to enhance the dissolution properties of albendazole (ABZ) by the use of amorphous solid dispersions. Phase diagrams of ABZ–polymer binary mixtures generated from Flory–Huggins theory were used to assess miscibility and processability. Forced degradation studies showed that ABZ degraded upon exposure to hydrogen peroxide and 1 N NaOH at 80?°C for 5?min, and the degradants were albendazole sulfoxide (ABZSX), and ABZ impurity A, respectively. ABZ was chemically stable following exposure to 1 N HCl at 80?°C for one hour. Thermal degradation profiles show that ABZ, with and without Kollidon® VA 64, degraded at 180?°C and 140?°C, respectively, which indicated that ABZ could likely be processed by thermal processing. Following hot melt extrusion, ABZ degraded up to 97.4%, while the amorphous ABZ solid dispersion was successfully prepared by spray drying. Spray-dried ABZ formulations using various types of acids (methanesulfonic acid, sulfuric acid and hydrochloric acid) and polymers (Kollidon® VA 64, Soluplus® and Eudragit® E PO) were studied. The spray-dried ABZ with methanesulfonic acid and Kollidon® VA 64 substantially improved non-sink dissolution in acidic media as compared to bulk ABZ (8-fold), physical mixture of ABZ:Kollidon® VA 64 (5.6-fold) and ABZ mesylate salt (1.6-fold). No degradation was observed in the spray-dried product for up to six months and less than 5% after one-year storage. In conclusion, amorphous ABZ solid dispersions in combination with an acid and polymer can be prepared by spray drying to enhance dissolution and shelf-stability, whereas those made by melt extrusion are degraded.  相似文献   

6.
Context: Development of solid dispersions is to improve the therapeutic efficacy by increasing the drug solubility, dissolution rate, bioavailability as well as to attain rapid onset of action.

Objective: The present research deals with the development of solid dispersions of flurbiprofen which is poorly water soluble to improve the solubility and dissolution rate using gelucires.

Materials and methods: In this study, solid dispersions were prepared following solvent evaporation method using gelucire 44/14 and gelucire 50/13 as carriers in different ratios. Then the formulations were evaluated for different physical parameters, solubility studies, DSC, FTIR studies and in vitro dissolution studies to select the best formulation that shows rapid dissolution rate and finally subjected to pharmacokinetic studies.

Results and discussion: From the in vitro dissolution study, formulation F3 showed the better improvement in solubility and dissolution rate. From the pharmacokinetic evaluation, the control tablets produced peak plasma concentration (Cmax) of 9140.84?±?614.36?ng/ml at 3?h Tmax and solid dispersion tablets showed Cmax?=?11?445.46?±?149.23?ng/ml at 2?h Tmax. The area under the curve for the control and solid dispersion tablets was 31?495.16?±?619.92 and 43?126.52?±?688.89?ng h/ml and the mean resident time was 3.99 and 3.68?h, respectively.

Conclusion: From the above results, it is concluded that the formulation of gelucire 44/14 solid dispersions is able to improve the solubility, dissolution rate as well as the absorption rate of flurbiprofen than pure form of drug.  相似文献   

7.
Abstract

Nifedipine-Polyethylene glycol solid dispersions were prepared by melting or fusion method in order to improve nifedipine solubility in the aqueous body fluids. The dissolution rate of the drug was markedly increased in these solid dispersion systems. The increase in dissolution was a function of the ratio of drug to polyethylene glycol used and the molecular weight of polyethylene glycol. The dissolution rate was compared with a 10% w/w physical mixture of drug with polyethylene glycol.

The physical state of nifedipine after fusion was determined by X-ray crystallography on the pure drug and on the solidified melts. The X-ray diffraction studies indicated that nifedipine in the solid dispersion which was obtained by sudden cooling of the melt, was in the thermodynamically unstable metastable form. It was established that the slow cooling of the melt as well as powdering of solid dispersion resulted in the emergence of crystallinity.

The effect of aging on nifedipine-polyethylene glycol 6000 solid dispersions has been investigated. After storage at room temperature for six months, solid dispersions showed no change in the dissolution rate and the X-ray diffraction pattern showed slight enhancement in crystallinity.  相似文献   

8.
Abstract

Context: The development of taste-masking technologies for foods and drugs is essential because it would enable people to consume and receive healthy and therapeutic effect without distress.

Objective: In the current study, in order to develop a novel method to prepare nanocomposite particles (microparticles containing bitter nanoparticles) in only one step, by using spray drying, a two-solution mixing nozzle-equipped spray dryer that we previously reported was used. The nanocomposite particles with or without poorly water-soluble polymers prepared using our spray-drying technique were characterized.

Methods: (1) The organic solution containing quinine, a model of bitter compound and poorly water-soluble polymers and (2) sugar alcohol (mannitol) aqueous solution were separately flown in tubes and two solutions were spray dried through two-solution type spray nozzle to prepare polymer-blended quinine nanocomposite particles. Mean diameters of nanoparticles, taste-masking effect and dissolution rate of quinine were evaluated.

Results: The results of taste masking by taste sensor suggested that the polymer (Eudragit EPO, Eudragit S100 or Ethyl cellulose)-blended quinine nanocomposite particles exhibited marked masking of instrumental quinine bitterness compared with the quinine nanocomposite particles alone. Quinine nanocomposite formulations altered the quinine dissolution rate, indicating that they can control intestinal absorption of quinine.

Conclusion: These results suggest that polymer-blended quinine composite particles prepared using our spray-drying technique are useful for masking bitter tastes in the field of food and pharmaceutical industry.  相似文献   

9.
Objective: To accelerate the determination of optimal spray drying parameters, a “Design of Experiment” (DoE) software was applied to produce well redispersible hesperidin nanocrystals.

Significance: For final solid dosage forms, aqueous liquid nanosuspensions need to be solidified, whereas spray drying is a large-scale cost-effective industrial process.

Methods: A nanosuspension with 18% (w/w) of hesperidin stabilized by 1% (w/w) of poloxamer 188 was produced by wet bead milling. The sizes of original and redispersed spray-dried nanosuspensions were determined by laser diffractometry (LD) and photon correlation spectroscopy (PCS) and used as effect parameters. In addition, light microscopy was performed to judge the redispersion quality.

Results: After a two-step design of MODDE 9, screening model and response surface model (RSM), the inlet temperature of spray dryer and the concentration of protectant (polyvinylpyrrolidone, PVP K25) were identified as the most important factors affecting the redispersion of nanocrystals. As predicted in the RSM modeling, when 5% (w/w) of PVP K25 was added in an 18% (w/w) of hesperidin nanosuspension, subsequently spray-dried at an inlet temperature of 100?°C, well redispersed solid nanocrystals with an average particle size of 276?nm were obtained. By the use of PVP K25, the saturation solubility of the redispersed nanocrystals in water was improved to 86.81?µg/ml, about 2.5-fold of the original nanosuspension. In addition, the dissolution velocity was accelerated.

Conclusions: This was attributed to the additional effects of steric stabilization on the nanocrystals and solubilization by the PVP polymer from spray drying.  相似文献   

10.
Context: Naringenin (NRG), the aglycone flavonoid present in grapefruits, possesses anti-inflammatory, anti-carcinogenic, anti-lipid peroxidation and hepato-protective effects. However, it is poorly soluble in water and exhibits slow dissolution after oral ingestion, thus restricting its therapeutic efficacy.

Objective: With the aim to enhance the dissolution rate and oral bioavailability of NRG, solid dispersion technique has been applied using Soluplus® as carrier.

Methods: Solid dispersions of NRG were prepared by solvent evaporation and kneading methods using various ratios (1:4, 3:7, 2:3 and 1:1) of NRG:Carrier. Characterization of the optimized formulations was performed using Fourier transform infrared spectroscopy, differential scanning calorimetry (DSC) and X-ray diffraction (XRD) analysis. The in vivo behavior of the optimized formulations was also investigated in Wistar Albino rats.

Results: NRG solid dispersion showed a significantly higher solubility and drug dissolution rate than pure NRG (p?Conclusion: Based on these results, it was concluded that solid dispersion technique markedly enhances the in vitro drug release and in vivo behavior of the grapefruit flavonoid NRG.  相似文献   

11.
Abstract

Monophenylbutazone is a very sparingly soluble drug. The effect of particle size on the dissolution characteristics of monophenylbutazone in a dissolution medium of 0.1 N hydrochloric acid and 0.1 N hydrochloric acid to which was added 0.005% Tween 80, was carried out. The enhancement of the dissolution rate of the medicament was attained by formulating the drug in both solid dispersion and physical mixture using urea and polyethylene glycol 4000 as carriers. A comparative dissolution behaviour of the medicament in different solid dispersion and physical mixture ratios were investigated at particle, size of < 63 μ. Drug-urea solid dispersion of a ratio 5:95% produced the highest dissolution rate.  相似文献   

12.
Context: Along with other options, solid dispersions prepared by spray drying offer the possibility of formulating poorly soluble drugs in a rapidly dissolving format. As a wide range of potential excipients and solvents is available for spray drying, it is usually necessary to carry out a comprehensive array of studies to arrive at an optimal formulation.

Objective: To study the influence of formulation parameters such as co-sprayed excipients, solvents and packaging on the manufacture, in vitro performance and stability of spray-dried oral drug products using fenofibrate as a model drug.

Materials and methods: Solid dispersions of fenofibrate with different amorphous polymers were manufactured from two solvent systems by spray drying. These were characterized in terms of physicochemical properties, crystalline content and dissolution behavior in biorelevant media upon production and after storage in two packaging systems (Glass and Activ-Vials?).

Results and discussion: Spray drying the same formulation from two different solvents led to different physicochemical properties, dissolution behavior and long-term stability. The dissolution behavior and long-term stability also varied significantly among excipients. The viscosity of the polymer and the packaging material proved to be important to the long-term stability.

Conclusion: For spray-dried products containing fenofibrate, the excipients were ranked according to dissolution and stability performance as follows: PVP derivatives >> HPMC 2910/15, HPMCAS-MF, HP-β-CD >> PVP:PVA 2:8. EtOH 96% proved superior to acetone/water for spray drying with polymers. The results were used to propose a general approach to developing spray-dried formulations of poorly soluble drugs.  相似文献   

13.
Abstract

The main objective of this study is to increase the dissolution rate of gliquidone using its solid dispersions with pluronic F-68 by solvent evaporation method. The solid dispersion of the drug with pluronic at ratio 1:3 showed the highest dissolution efficiency (50.7%) after 10?min, so it was incorporated in fast dissolving tablets. Fourier transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC) were used to study the interaction between gliquidone and pluronic in the solid state. The FTIR spectroscopic studies revealed no chemical interaction between the drug and pluronic, while the DSC results indicated the amorphous state of gliquidone in the solid dispersion. A 32 full factorial design was used to study the effect of varying concentrations of croscarmellose and sodium starch glycolate as superdisintegrants on the disintegration time and the percentage released after 10?min. The optimized formula showed a disintegration time of 39.1?±?1.2?s and 85.43%?±?5.16% released after 10?min and was selected for the in-vivo studies in rabbits. The selected formula showed significant enhancement of gliquidone bioavailability, about 1.8 times compared with the commercial Glurenor tablets.  相似文献   

14.
Objective: The aim of this study was to evaluate the applicability of POVACOATTM, a hydrophilic PVA copolymer, as a solid dispersion (SD) carrier for hot-melt extrusion (HME).

Methods: Bifendate (DDB), a water-insoluble drug, was chosen as the model drug. DDB was hot-melt extruded by a co-rotating twin screw extruder with POVACOATTM. The SD formability of POVACOATTM was investigated by varying the composition ratios. Solid state characterization was evaluated by differential scanning calorimetry, powder X-ray diffraction, scanning electron microscopy and Fourier transformation infrared spectroscopy. In order to have a better knowledge of the mechanism of dissolution enhancement, dissolution study, phase solubility study and crystallization study of DDB from supersaturated solutions were performed. In addition, the storage stability of the extrudate containing 10% DDB was investigated.

Results: Physical characterizations showed that DDB was amorphous up to 15% drug loading. The phase solubility study revealed an AL-type curve. Moreover, POVACOATTM was found to have an inhibitory effect on crystallization from supersaturated solutions. Compared with the pure DDB and physical mixture, the dissolution rate and solubility of extrudates were significantly enhanced and the drug loading markedly affected the dissolution of SDs. Furthermore, the stability test indicated that 10% DDB-SD was stable during storage (40?°C/75% RH).

Conclusion: The results of this study demonstrate that POVACOATTM is a valuable excipient for the formulation of solid dispersions prepared by HME to improve dissolution of poorly water-soluble drugs.  相似文献   

15.
Abstract

A controlled release oral drug delivery system of Sulfasomidine was developed by spray congealing micropelleting technique using gelatin as the embedding matrix. The pellets were hardened by treating with Formalin-Isopropanol mixture. The in vitro release rate studies of Sulfasomidine from the micropelleted dosage form, revealed that the drug release can be prolonged upto eight hours and not more than 39% of the embedded drug released in the first hour of the in vitro dissolution study. The in vitro release patterns correlated with the reported in vivo studies. The method of formulation was optimized.  相似文献   

16.
Cubosomes have been presented to enhance dissolution of insoluble drugs, but their applications are limited by the practical hurdles associated with both preparation and storage instability, resulting in drug delivery failure. In the present study, an innovative cubosome precursor-microparticles (CPMs) spray dried from an aqua-free precursor solution was developed to improve cubosome stability during both preparation and storage as well as to enhance the dissolution of insoluble drugs. These CPMs spontaneously self-assembled in situ forming homogeneous cubosome dispersion by hydration and disintegration after exposure to the aqueous medium. The stable cubosome dispersion was obtained from self-assembly (SA) of CPMs after administration instead of fragmentation of bulk cubic phase gel into cubosomes, which settled the preparation instability due to avoidance of high energy fragmentation (e.g. ultrasonic effect, high speed shear and high pressure homogenization). Also, the subsequent storage instability issue can be excluded as the CPMs were stored in a solid stable form. The CPMs disintegration and cubosome SA were demonstrated by the notable morphology variation and the distinct microparticle size decrease from CPMs (10–20?μm) to SA-cubosomes (150–200?nm). The cumulative release of docetaxel (DTX, model insoluble drug) incorporated in CPMs increased to 96.4% within 120?minutes compared with only 75.2% for blank CPMs and DTX physical mixture, demonstrating that CPMs significantly enhanced the dissolution extent of insoluble drug. The SA-cubosomes possessed quite high drug entrapment efficiency (>95%) and an integrated drug dissolution content, which significantly increased the drug utilization rate.  相似文献   

17.
Abstract

Miconazole and miconazolenitrate are antifungal drugs with poor solubilities in water and saliva. The low solubilities meant that only small amounts of the drugs – incorporated by a conventional method in chewing gum-were released during mastication. The experiments were performed on a mastication device.

In this study it was shown that application of a 20% miconazole – 80% polyethyleneglycol 6000 solid dispersion drastically improved the in vitro release of miconazole from cheving gum, when a medium similar to saliva was used. In addition to polyethyleneglycol 6000, polyvinylpyrrolidone 40000, xylitol and urea were tested as carriers. It was also shown that the release rate of miconazole from chewing gum was much greater than the release rate of miconazolenitrate.

No certain correlation could be shown between the dissolution rates of the solid dispersions measured by a stirring paddle method and the release rates of miconazole from solid dispersions in chewing gum.

The solid dispersion systems were characterized by differential scanning calorimetry. The systems containing polyethyleneglycol 6000 and xylitol were eutectic. Polyvinylpyrrolidone 40000 prevented crystallisation of miconazole when the percentage of drug in the solid dispersion was less than 50%.  相似文献   

18.
ABSTRACT

The formation of melt dispersion is an effective method of increasing the dissolution rate of poorly soluble drugs, and hence, of improving the bioavailability. The carrier fusion method was used to prepare different dispersion of etodolac using Gelucire 44/14 and D-α-tocopheryl polyethylene glycol 1000 succinate (TPGS). The physical characteristics of the binary systems were determined by differential scanning calorimetry (DSC), infrared spectroscopy (IR). The release rate from the resulting dispersion was determined from dissolution studies by use of USP dissolution apparatus II (paddle method). The dissolution rate of etodolac is increased in all the dispersion systems compared to that of pure drug. A liquid dispersion system of etodolac (20%) and Gelucire 44/14: TPGS blend (80%), in different ratios, was also prepared. The capsule formulation was subjected to stability studies at different temperature and humidity conditions as per ICH guidelines. Physical and chemical properties of the dispersion didn't change during a period of storage at room temperature and at 4°C, 0% RH. It was found that etodolac was chemically stable against the effects of temperature and humidity. However, the relative humidity and storage time exerted an effect on the dissolution behavior of etodolac. The changes in dissolution behavior after storage under conditions of high humidity and temperature might be related to the formation of etodolac microcrystal and to water absorption by the carrier during storage. It is predicted that acceptable shelf-lives should result when moisture-resistant packaging is used for pharmaceutical formulations of this type.  相似文献   

19.
Context: Piperine alkaloid, an important constituent of black pepper, exhibits numerous therapeutic properties, whereas its usage as a drug is limited due to its poor solubility in aqueous medium, which leads to poor bioavailability.

Objective: Herein, a new method has been developed to improve the solubility of this drug based on the development of solid dispersions with improved dissolution rate using hydrophilic carriers such as sorbitol (Sor), polyethylene glycol (PEG) and polyvinyl pyrrolidone K30 (PVP) by solvent method. Physical mixtures of piperine and carriers were also prepared for comparison.

Methods: The physicochemical properties of the prepared solid dispersions were examined using SEM, TEM, DSC, XRD and FT-IR. In vitro dissolution profile of the solid dispersions was recorded and compared with that of the pure piperine and physical mixtures. The effect of these carriers on the aqueous solubility of piperine has been investigated.

Results: The solid dispersions of piperine with Sor, PEG and PVP exhibited superior performance for the dissolution of piperine with a drug release of 70%, 76% and 89%, respectively after 2?h compared to physical mixtures and pure piperine, which could be due to its transformation from crystalline to amorphous form as well as the attachment of hydrophilic carriers to the surface of poorly water-soluble piperine.

Conclusion: Results suggest that the piperine solid dispersions prepared with improved in vitro release exhibit potential advantage in delivering poorly water-soluble piperine as an oral supplement.  相似文献   

20.
The aim of this study was to prepare, characterize, and evaluate apigenin in a solid dispersion system to improve the dissolution rate and bioavailability of such poorly soluble drug. Apigenin was dissolved in organic solvent with micelle forming polymer Pluronic F-127 (PL-F127). Solid dispersion of apigenin-PL F-127 was developed using spray drying technique. Physicochemical and in vitro characterization of the produced solid dispersion particles were conducted using scanning electron microscopy, differential scanning calorimetry, Fourier transform infrared spectroscopy, powder X-ray diffractometry and dissolution study. In addition, in vivo study was performed for the spray dried versus pure and marketed apigenin. Cmax was found to be around 5 folds higher for spray dried product compared to non spray dried materials. The prepared drug:polymer formulation showed elongated particles and complete lack of crystallinity at 1:4 ratio. The change in the vibrational wave numbers strongly suggested the formation of hydrogen bonding between apigenin and PL F-127. Significant increase in the dissolution rate and bioavailability of the spray dried apigenin showed the potential of solid dispersion system to overcome problem related to BCS II drugs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号