共查询到20条相似文献,搜索用时 0 毫秒
1.
矩阵分解已经成为预测用户对物品评分的一种常用方法。传统的矩阵分解技术没有考虑到用户评分之间的差异性,针对上述问题在矩阵分解的基础上,提出差值矩阵分解模型。算法将每个用户对物品的评分减去与其社会属性相似用户对该物品评分的平均分,得到一个差值矩阵,然后对差值矩阵进行分解。在Movielens 1M数据集的实验结果表明,该算法的预测精度较贝叶斯概率矩阵分解、矩阵分解、融合用户属性的隐语义模型都有较为明显的提升。 相似文献
2.
3.
4.
针对当前群组推荐研究中,对于用户偏好建模时大多忽略了群组偏好与个人偏好之间的相互影响以及建模初始化问题,提出了一种基于ranking的混合深度张量分解群组推荐算法(R-HDTF)。该算法首先利用基于深度降噪自动编码器的混合神经网络对群组、个人和项目等信息进行初始化;然后提出基于成对张量分解模型来捕获群组、个人和项目之间的相关关系;最后,采用BPR标准优化张量分解的损失函数,学习提出算法的参数。在真实数据集上的实验结果表明,该算法性能优于传统的主流群组推荐算法。 相似文献
5.
针对在移动环境下使用传统推荐算法进行个性化影视推荐时存在的准确度不高的问题,提出了一种基于情境感知的矩阵分解算法。该算法在基本矩阵分解算法的基础上,通过融入全局偏置和情境偏置来进行未知评分预测。该算法的优势在于:一方面,使用矩阵分解的方式使得矩阵的规模远远小于原始评分矩阵;另一方面,该算法充分融入了情境要素对评分的影响,使得预测评分更加精准。通过在LDOS-CoMoDa数据集上进行实验,结果表明,该算法在准确度上优于基于用户的协同过滤算法、基本矩阵分解算法和baseline预测算法。 相似文献
6.
深度矩阵分解采用深层非线性映射,从而突破了矩阵分解中双线性关系影响推荐系统性能的瓶颈,但它没有考虑用户对未评分项目的偏好,且对于稀疏性较高的大规模数据其推荐性能不具有优势,为此提出一种融合矩阵补全与深度矩阵分解的推荐算法.首先通过矩阵补全模型将原始评分矩阵中的未知元素进行填补,然后依据补全后的矩阵,利用深度学习模型分别构建用户和项目潜在向量.最后,在MovieLens和SUSHI数据集上进行测试,实验结果表明,与深度矩阵分解相比,所提算法显著地提高了推荐系统的性能. 相似文献
7.
差分隐私保护在推荐系统中的应用研究 总被引:2,自引:0,他引:2
推荐系统已经成为Internet商家给用户提供个性化服务的高级商务智能平台之一。然而,用于研究推荐系统的数据信息里往往存在能够被攻击者直接或者间接获取的个人隐私。近年来受到极大关注的差分隐私保护是一种非常严格的、可证明的隐私保护模型。针对目前流行的协同过滤算法之一的矩阵分解进行了研究,提出了采用差分隐私保护技术对原始输入数据进行预处理和扰动处理的新方法。最后通过在真实数据集上进行相关实验验证,结果表明文中提出的带差分隐私保护的矩阵分解算法达到了预期:一方面既能保护用于做推荐研究的原始数据集的隐私,另一方面又没有严重影响推荐的准确率。 相似文献
8.
Ming HE Hao GUO Guangyi LV Le WU Yong GE Enhong CHEN Haiping MA 《Frontiers of Computer Science》2020,14(2):273-290
Recently,many online Karaoke(KTV)platforms have been released,where music lovers sing songs on these platforms.In the meantime,the system automatically evaluates user proficiency according to their singing behavior.Recommending approximate songs to users can initialize singers5 participation and improve users,loyalty to these platforms.However,this is not an easy task due to the unique characteristics of these platforms.First,since users may be not achieving high scores evaluated by the system on their favorite songs,how to balance user preferences with user proficiency on singing for song recommendation is still open.Second,the sparsity of the user-song interaction behavior may greatly impact the recommendation task.To solve the above two challenges,in this paper,we propose an informationfused song recommendation model by considering the unique characteristics of the singing data.Specifically,we first devise a pseudo-rating matrix by combing users’singing behavior and the system evaluations,thus users'preferences and proficiency are leveraged.Then we mitigate the data sparsity problem by fusing users*and songs'rich information in the matrix factorization process of the pseudo-rating matrix.Finally,extensive experimental results on a real-world dataset show the effectiveness of our proposed model. 相似文献
9.
针对现有社交化推荐算法忽视了评级数据与社交信息之间关联的探索,提出了一种融合交互强度的优化社交推荐算法。首先,利用社交信息和评级数据结合两种相似度丰富社交矩阵;接着,定义用户间交互强度代表用户间复杂关系;最后,利用交互强度与社交关系之间的关联以及用户潜在特征与用户群体参与特征的关联构建新的目标函数,学习用户和项目的潜在特征,实现个性化推荐。在三个真实数据集上进行实验,与基线模型相比,提出算法在推荐预测精度上有显著提升,且在对不同评级数量的用户进行潜在特征学习时,表现出良好的鲁棒性。综上,融合交互强度可以进一步提升社交化推荐算法性能,增强用户体验感。 相似文献
10.
社会化网络中的推荐系统可以在浩瀚的数据海洋中给用户推荐相关的信息。社会网络中用户之间的信任关系已经被用于推荐算法中,但是目前的基于信任的推荐算法都是单一的信任模型。提出了一种基于主题的张量分解的用户信任推荐算法,用来挖掘用户在不同的物品选取的时候对不同朋友的信任程度。由于社交网络更新速度快,鉴于目前的基于信任算法大都是静态算法,提出了一种增量更新的张量分解算法用于用户信任的推荐算法。实验结果表明:所提出的基于主题的用户信任推荐算法比现有算法具有更好的准确性,并且增量更新的推荐算法可以大幅度提高推荐算法在训练数据增加后的模型训练效率,适合更新速度快的社会化网络中的推荐任务。 相似文献
11.
基于标签的推荐算法已成为研究热点,现有相关研究集中在利用标签改进协同过滤推荐算法和基于内容的推荐算法,鲜有研究把标签引入更先进的矩阵分解推荐算法。而现有矩阵分解推荐算法大多使用商品类别作为因子向量对用户偏好和商品特征建模,限制了其精度的提升。本文使用标签构建因子向量,提出一种新的基于标签的矩阵分解推荐算法。经过真实数据检测,本文提出的推荐算法较以往基于类别的矩阵分解算法在精度上有了显著提升。 相似文献
12.
随着社交网络的发展,融合社交信息的推荐成为推荐领域中的一个研究热点.基于矩阵分解的协同过滤推荐方法(简称为矩阵分解推荐方法)因其算法可扩展性好及灵活性高等诸多特点,成为研究人员在其基础之上进行社交推荐模型构建的重要原因.本文围绕基于矩阵分解的社交推荐模型,依据模型的构建方式对社交推荐模型进行综述.在实际数据上对已有代表性社交推荐方法进行对比,分析各种典型社交推荐模型在不同视角下的性能(如整体用户、冷启动用户、长尾物品).最后,分析基于矩阵分解的社交推荐模型及其求解算法存在的问题,并对未来研究方向与发展趋势进行了展望. 相似文献
13.
14.
15.
微博作为一种实时的信息传播和分享的社交网络平台,对人们日常生活的影响越来越大.在微博中,用户可以通过关注关系,添加自己感兴趣的好友,扩大自己的交际圈.但如何推荐高质量的关注好友,一直是个性化服务的难点之一.针对此种情况,提出一种微博好友推荐算法,旨在为用户推荐高质量的关注用户.该算法是对基于Seeker-Source矩阵分解模型的一种改进算法.文中分析了微博用户的多种数据源信息,并给出了相应的特征提出方法,最后将这些特征引入到Seeker-Source矩阵分解模型中,通过对模型的优化求解,得到最佳的参数因子矩阵,从而完成好友推荐.在真实的微博数据集上的实验表明,本文所提出的算法取得了良好的效果. 相似文献
16.
餐馆推荐可以利用用户的签到信息、时间上下文、地理上下文、餐馆属性信息以及用户的人口统计信息等挖掘用户的饮食偏好,为用户生成餐馆推荐列表.为了更加有效地融合这些数据信息,提出一种融合了多种数据信息的餐馆推荐模型,该模型首先利用签到信息和时间上下文构建“用户-餐馆-时间片”的三维张量,同时利用其他数据信息挖掘若干用户相似关系矩阵和餐馆相似关系矩阵;然后,在概率张量分解的基础上同时对这些关系矩阵进行分解,并利用BPR优化准则和梯度下降算法进行模型求解;最后得到预测张量,从而为目标用户在不同时间片生成相应的餐馆推荐列表.通过在两个真实数据集上的实验结果表明:相比于目前存在的餐馆推荐模型,所提出的模型有着更好的推荐效果和可接受的运行时间,并且缓解了数据稀疏性对推荐效果的影响. 相似文献
17.
针对推荐系统中普遍存在的数据稀疏和冷启动等问题,本文将标签与基于信任的社交推荐方法相结合,提出了一种融合社会标签和信任关系的社会网络推荐方法。该方法利用概率因式分解技术实现了社会信任关系、项目标记信息和用户项目评分矩阵的集成。从不同维度出发,实现了用户和项目潜在特性空间的互连。在此基础上,通过概率矩阵因式分解技术实现降维,从而实现了有效的社会化推荐。在Epinions和Movielens数据集上的实验结果表明本文所提出的方法优于传统的社会化推荐和社会标签推荐算法,特别是当用户评分数据较少时该算法的优越性体现得更好。 相似文献
18.
The development of the internet has brought great convenience to people's travel and shopping. More and more people choose to shop online. As e-commerce continues to grow in scale, the number and variety of products are also growing rapidly, which results in customers taking a lot of time to find the products they want to buy. This problem prevents people from using the Internet quickly and efficiently. In order to solve these problems, personalized recommendation system comes into being. It can directly predict the content that users may be interested in based on their historical behavior, and make personalized recommendations for them in the massive data. Based on the idea of collaborative filtering, this paper adopts matrix factorization method to analyze the sales records of an e-commerce platform, and analyzes the potential preferences of 686 customers, and gives the top five personalized recommended products StockCode of users. 相似文献
19.
矩阵分解通过降维的方式可以在一定程度上解决数据的稀疏性问题。考虑时间信息可以根据时间信息的变化来预测用户对物品的兴趣趋势。考虑邻域关系可以产生以共同兴趣为基础的推荐。但是,现在所研究的矩阵分解当中很少综合考虑时间信息和邻域关系对用户评分预测的影响。本文提出一种融合时间和邻域信息的矩阵分解算法,此算法把时间信息与领域关系直接映射到用户-物品-时间的三维空间,通过隐含特征直接寻找他们之间的潜在关系。在MovieLens上的实验结果表明,本文提出的推荐算法在一定程度上提高了推荐结果的准确性。 相似文献