首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recently,many online Karaoke(KTV)platforms have been released,where music lovers sing songs on these platforms.In the meantime,the system automatically evaluates user proficiency according to their singing behavior.Recommending approximate songs to users can initialize singers5 participation and improve users,loyalty to these platforms.However,this is not an easy task due to the unique characteristics of these platforms.First,since users may be not achieving high scores evaluated by the system on their favorite songs,how to balance user preferences with user proficiency on singing for song recommendation is still open.Second,the sparsity of the user-song interaction behavior may greatly impact the recommendation task.To solve the above two challenges,in this paper,we propose an informationfused song recommendation model by considering the unique characteristics of the singing data.Specifically,we first devise a pseudo-rating matrix by combing users’singing behavior and the system evaluations,thus users'preferences and proficiency are leveraged.Then we mitigate the data sparsity problem by fusing users*and songs'rich information in the matrix factorization process of the pseudo-rating matrix.Finally,extensive experimental results on a real-world dataset show the effectiveness of our proposed model.  相似文献   

2.
针对在移动环境下使用传统推荐算法进行个性化影视推荐时存在的准确度不高的问题,提出了一种基于情境感知的矩阵分解算法。该算法在基本矩阵分解算法的基础上,通过融入全局偏置和情境偏置来进行未知评分预测。该算法的优势在于:一方面,使用矩阵分解的方式使得矩阵的规模远远小于原始评分矩阵;另一方面,该算法充分融入了情境要素对评分的影响,使得预测评分更加精准。通过在LDOS-CoMoDa数据集上进行实验,结果表明,该算法在准确度上优于基于用户的协同过滤算法、基本矩阵分解算法和baseline预测算法。  相似文献   

3.
胡云  李慧  施珺 《计算机应用》2017,37(3):791-795
针对推荐系统中普遍存在的数据稀疏和冷启动等问题,提出一种综合评分和信任关系的社会化推荐算法。首先对网络中新用户的初始信任值进行合理赋值,有效地解决了新用户的信任冷启动问题。鉴于用户的喜好会受其朋友的影响,推荐模型又利用朋友之间的信任矩阵对用户自身的特征向量进行修正,解决了用户特征向量的精准构建及信任传递问题。实验结果表明,所提算法较传统的社会网络推荐算法在性能上有显著提高。  相似文献   

4.
缓存替换策略是内容分发网络(Content Delivery Network, CDN)研究中的重要内容。常用的缓存方案是根据内容本身的特征进行缓存,比如视频的流行度、评分质量等。文章在缓存策略的设计中考虑到了用户特征,即根据用户的喜好,选择需要缓存的内容。使用基于矩阵分解的推荐算法对用户需求进行分析,筛选出用户可能感兴趣的视频,并利用基于加权评分预测值的贪婪缓存算法选择合适的内容进行缓存。仿真实验的结果表明,该算法可以将缓存命中率提高5-10%。  相似文献   

5.
Nowadays, there is a significant increase in information, resulting in information overload. Recommendation systems have been widely adopted, and they can help users find information relevant to their interests. However, a malicious attacker can infer users' private information via recommendations. To solve problems of data sparseness, enormous high-dimensional data, the cold start problem and privacy protection in an intelligent recommender system, this study proposes a privacy-preserving collaborative filtering recommendation method with clustering and locality-sensitive hashing. First, we cluster users according to their characteristic information to obtain sub-rating matrices. We use the latent factor model to predict and fill in the missing ratings in those matrices. Second, we combine the sub-rating matrices into a complete rating matrix, subsequently, we obtained the neighbors of the target user by analyzing the similarity of the users. We use a locality-sensitive hashing algorithm to reduce the dimensionality of the user rating data and build an index that could quickly obtain the neighbors of the target user. Finally, we predict the target user's ratings and provide recommendations to the target user. Through experiments, our study shows that our method can deal with the problems of data sparseness and cold start problems well and the accuracy of the intelligent recommendation system has been improved. In addition, we use hash techniques to search for the neighbors, which effectively protects the privacy of the user.  相似文献   

6.
为进一步提高个性化标签推荐性能,针对标签数据的稀疏性以及传统方法忽略隐藏在用户和项目上下文中潜在标签的缺陷,提出一种基于潜在标签挖掘和细粒度偏好的个性化标签推荐方法。首先,提出利用用户和项目的上下文信息从大量未观测标签中挖掘用户可能感兴趣的少量潜在标签,将标签重新划分为正类标签、潜在标签和负类标签三类,进而构建〈用户,项目〉对标签的细粒度偏好关系,在缓解标签稀疏性的同时,提高对标签偏好关系的表达能力;然后,基于贝叶斯个性化排序优化框架对细粒度偏好关系进行建模,并结合成对交互张量分解对偏好值进行预测,构建细粒度的个性化标签推荐模型并提出优化算法。对比实验表明,提出的方法在保证较快收敛速度的前提下,有效地提高了个性化标签的推荐准确性。  相似文献   

7.
融合朋友关系和标签信息的张量分解推荐算法   总被引:1,自引:0,他引:1  
针对大众标注网站项目推荐系统中存在数据矩阵稀疏性影响推荐效果的问题,考虑矩阵奇异值分解(SVD)能有效地平滑数据矩阵中的数据,以及朋友圈能够反映出一个人的兴趣爱好,提出了一种融合朋友关系和标签信息的张量分解推荐算法。首先,利用高阶奇异值分解(HOSVD)方法对用户-项目-标签三元组信息进行潜在语义分析和多路降维,分析用户、项目、标签三者间关系;然后,再结合用户朋友关系、朋友间相似度,修正张量分解结果,建立三阶张量模型,从而实现推荐。该模型方法在两个真实数据集上进行了实验,结果表明,所提算法与高阶奇异值分解的方法比较,在推荐的召回率和精确度指标上分别提高了2.5%和4%,因此,所提算法进一步验证了结合朋友关系能够提高推荐的准确率,并扩展了张量分解模型,实现用户个性化推荐。  相似文献   

8.
传统的基于内容的推荐算法往往具有较低的准确性,而协同过滤推荐算法中普遍存在数据稀缺性和项目冷启动问题。为解决上述问题,提出了一种融合内容与协同矩阵分解技术的混合推荐算法。该算法实现了在共同的低维空间中分解内容和协同矩阵,同时保留数据的局部结构。在参数优化方面利用一种基于乘法更新规则的迭代方法,以此提高学习能力。实验结果表明,该算法优于其他具有代表性的项目冷启动推荐算法,有效缓解了数据稀疏性,提高了推荐准确性。  相似文献   

9.
微博网站作为一种流行的社交媒体形式,在为用户提供丰富信息和服务的同时,也带来了信息超载问题。如何利用微博网络为用户推荐有价值的信息,以缓解信息超载问题,变得日益重要。根据微博网络的有向性以及建立关注关系的随意性等特点,提出了一种基于非负多矩阵分解的微博网络推荐方法,综合考虑了用户之间的关注关系、用户与微博内容的转发关系,以及微博内容与主题的所属关系等多源信息。基于新浪微博数据集进行了微博内容推荐实验,结果表明基于非负多矩阵分解的方法,能够有效利用微博网络中的多维信息,显著提高推荐准确度。本方法不仅能挖掘出微博内容的主题,还能挖掘出用户间的关联关系,还可推广到对用户进行好友和主题的推荐。  相似文献   

10.
针对现有推荐方法存在交互信息应用不充分和推荐性能不佳的问题,充分利用用户和项目之间的间接交互信息,采用可达矩阵来表达用户和项目之间的间接交互关系,通过可达矩阵与因式分解机有机融合,构建了一个新的推荐方法.在Amazon-Book、Last-FM和Yelp2018数据集上的实验表明,所提方法在推荐效果上既优于传统的基于因式分解机的推荐方法,又好于最新的基于神经网络因式分解机的推荐模型,在推荐的时间效率上比基于知识图谱注意力网络的推荐方法具有明显优势.同时,相对其他推荐方法,该方法还具有更好的可解释性.  相似文献   

11.
王磊  任航  龚凯 《计算机应用》2019,39(5):1269-1274
针对现有社会化推荐算法在信任分析方面的不足,研究了从社交辅助信息中充分挖掘用户信任关系的方法,进而提出一种基于多维信任计算和联合矩阵分解的社会化推荐算法。首先,从用户社交行为、社交圈特征获得用户的动态和静态两种局部信任度,再利用信任网络的结构特征提取全局信任度;然后,构造一种对增强关注矩阵和社交信任矩阵进行联合矩阵分解的社会化推荐算法,并采用随机梯度下降法对其求解。基于新浪微博数据集的实验结果表明,所提出的算法在推荐精度和Top-K推荐能力方面明显优于socailMF、LOCABAL、contextMF和TBSVD这几种代表性的社会化推荐算法。  相似文献   

12.
陈一然 《计算机应用研究》2020,37(8):2288-2291,2296
矩阵分解由于其简单可靠的特性,是推荐系统中最重要的算法之一,由于内积无法完全捕捉用户和商品间的交互,矩阵分解的性能难以继续提升。为了解决这个问题,改进了基础的距离度量分解模型,提出了基于偏置度量分解与隐反馈的协同过滤推荐算法,并对用户评分时间动态建模,进一步提升了模型性能。针对推荐系统中最常见的评分预测任务,分别在三个数据集上进行实验验证,实验结果表明所提出的模型的预测准确率有明显提升。  相似文献   

13.
为了解决推荐列表偏向于热门项目,多样性差的问题,提出了ARIFDP算法(aggregation recommendation algorithm for embedding item fatigue and diversity preference)。首先通过对用户历史反馈数据分析用户的多样性偏好,得出用户的多样倾向度,进而构造了与评价次数负相关的项目疲劳函数,最终将矩阵分解与项目疲劳函数相聚合,并加入多样倾向度调节项目疲劳函数所占权重,增加了冷门项目被推荐的概率。实验结果表明,ARIFDP算法能在保证准确率的前提下有效提高推荐结果的多样性。  相似文献   

14.
随着社交网络的发展,融合社交信息的推荐系统在一定程度上解决了协同过滤推荐系统的冷启动和数据稀疏等问题,但是在信任数据稀疏情况下,仍会造成推荐精度降低等问题。为此,提出了一种融合隐含信任度和项目关联度的矩阵分解推荐算法。首先,利用矩阵分解模型将信任数据进行分解,得到用户的潜在被信任矩阵,在此基础上引入用户的影响力,从而提出了基于隐含信任度的推荐模型;然后,为了更好的利用项目间的关联信息,反映项目间的有向性,提出了基于项目关联度的推荐模型;最后,综合两种推荐模型并构建了一种推荐算法TCRMF。实验结果表明,所提算法在评分数据和信任数据稀疏的情况下仍然可以有效地提高推荐算法的精度,具有良好的应用前景。  相似文献   

15.
杨阳  向阳  熊磊 《计算机应用》2012,32(2):395-398
针对个性化推荐系统中协同过滤算法面对的矩阵稀疏和新使用者问题,提出基于矩阵分解与用户近邻模型的推荐算法。通过对用户档案信息构建近邻模型以保证新使用者预测的准确性;同时考虑到数据量大和矩阵稀疏会引起时间和空间复杂度过高等问题,引入奇异值矩阵分解的方式,从而减小矩阵稀疏和数据量大的影响,提高推荐系统的准确性。实验结果表明,该算法能有效解决大数据量的矩阵稀疏问题以及新使用者问题。  相似文献   

16.
随着位置社交网络(location-based social network, LBSN)的快速增长,兴趣点(point-of-interest, POI)推荐已经成为一种帮助人们发现有趣位置的重要方式.现有的研究工作主要是利用用户签到的历史数据及其情景信息(如地理信息、社交关系)来提高推荐质量,而忽视了利用兴趣点相关的评论信息.但是,现实中用户在LBSN中只对少数兴趣点进行签到,使得用户签到历史数据及其情景信息极其稀疏,这对兴趣点推荐来说是一个巨大的挑战.为此,提出了一种新的兴趣点推荐模型,称为GeoSoRev模型.该模型在已有的基于矩阵分解的经典推荐模型的基础上,融合关于兴趣点的评论信息、用户社交关联和地理信息这3个因素进行兴趣点推荐.基于2个来自Foursquare的真实数据集的实验结果表明,与其他主流的兴趣点推荐模型相比,GeoSoRev模型在准确率和召回率等多项评价指标上都取得了显著的提高.  相似文献   

17.
文凯  朱传亮 《计算机应用》2018,38(9):2523-2528
针对目前用户偏好数据和社交关系数据十分稀疏的问题,以及用户可能更加喜欢朋友推荐的商品而不喜欢非朋友推荐的商品这样一个事实,提出了一种结合社交网络和用户间的兴趣偏好相似度的正则化矩阵分解推荐算法,首先针对社交关系数据稀疏问题,利用网络的全局和局部拓扑特性挖掘出用户间的信任和不信任关系矩阵,然后定义了一种改进的用户间的兴趣偏好相似度计算方法,最后在矩阵分解的过程中将信任矩阵、不信任矩阵以及兴趣相关性综合起来为用户作出推荐。实验表明该方法优于主要的正则化推荐方法,与基本的矩阵分解模型(SocialMF)、SoRec、TrustMF、CTRPMF、RecSSN算法相比,算法在均方根误差(RMSE)和平均绝对误差(MAE)上分别减小了1.1%~9.5%和2%~10.1%,取得了较好的推荐效果。  相似文献   

18.
针对推荐系统中用户评分数据稀疏所导致推荐结果不精确的问题,本文尝试将用户评分、信任关系和项目评论文本信息融合在概率矩阵分解方法中以缓解评分数据稀疏性问题.首先以共同好友数目及项目流行度改进皮尔逊用户偏好相似程度并将其作为用户间的直接信任值,然后考虑用户间信任传播过程中所有路径的影响构建新的信任网络;其次通过BERT预训...  相似文献   

19.
Maximization of flexibility is one of the major challenges in assembly line design. This article addresses the question of how to temporarily (in times of peak demand) increase the output of a line, which is already optimized to attain the “normal” output rate. Instead of a costly reconfiguration of the line creating extra workstations for more operators, we applied an approach of keeping the line intact, adding two extra operators, and applying a scheme wherein the operators took their breaks alternately. For two different alternating break schemes, we compared the productivity rates, the physical load on operators, and the operators' experiences to those of the traditional situation. The new approach resulted in an increase in line output of 12–16%, depending on which alternating break scheme was applied. On the operator level, we observed no differences in productivity among conditions, despite the differences in total pause time per operator. Simultaneously, physical loads on the neck and shoulders, expressed by level of discomfort, were found to be significantly lower in one of the new alternating break schemes. A majority of the operators rated this alternating break scheme as “pleasant” (90%), but wanted the scheme to be applied only during the periods of peak demand because of social aspects (80%). In conclusion, an increase in volume flexibility can be achieved by adding two extra workers and applying an alternating work/rest scheme without a costly reconfiguration of the line. © 2010 Wiley Periodicals, Inc.  相似文献   

20.
There is little epidemiological data to make reliable conclusions about the effects of exposure to cold on the body’s physiological responses. The current study aimed to address this lacuna in the available research. The study sample consisted of 50 outdoor mechanic workers as a case group and 15 staff members as a control group used in the outdoor automechanic workshops. Air environmental factors, including dry‐bulb temperature and air velocity, were measured by the portable hot wire thermo anemometer in the workstation of each subject. The body’s physiological responses were also measured during daily activities in accordance with ISO 9886. Using Semmes–Weinstein monofilament, touch sensory tests were conducted for determining hands’ sensorineural functions. The baseline measurements showed the mechanic workers had lower finger sensation levels and finger skin temperatures than the control group (p < 0.05). This may be attributed to long‐term exposure to acute cold air during cold seasons. However, after short‐term exposure to extreme cold environment, the mechanic workers showed lower losses in finger skin temperatures and finger sensation levels than the control group ( p < 0.05). The findings confirmed that prolonged localized cold exposure among mechanic workers can result in localized habituation of vasoconstrictor responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号