首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Organic compound emission rates for volatile organic compounds (VOC), gas-phase semivolatile organic compounds, and particle-phase organic compounds are measured from residential fireplace combustion of wood. Firewood from a conifer tree (pine) and from two deciduous trees (oak and eucalyptus) is burned to determine organic compound emissions profiles for each wood type including the distribution of the alkanes, alkenes, aromatics, polycyclic aromatic hydrocarbons (PAH), phenol and substituted phenols, guaiacol and substituted guaiacol, syringol and substituted syringols, carbonyls, alkanoic acids, resin acids, and levoglucosan. Levoglucosan is the major constituent in the fine particulate emissions from all three wood types, contributing 18-30% of the fine particulate organic compound emissions. Guaiacol (2-methoxyphenol), and guaiacols with additional substituents at position 4 on the molecule, and resin acids are emitted in significant quantities from pine wood combustion. Syringol (2,6-dimethoxyphenol) and syringols with additional substituents at position 4 on the molecule are emitted in large amounts from oak and eucalyptus firewood combustion, but these compounds are not detected in the emissions from pine wood combustion. Syringol and most of the substituted syringols are found to be semivolatile compounds that are present in both the gas and particle phases, but two substituted syringols that have not been previously quantified in wood smoke emissions, propionylsyringol and butyrylsyringol, are found exclusively in the particle phase and can be used to help trace hardwood smoke particles in the atmosphere. Benzene, ethene, and acetylene are often used as tracers for motor vehicle exhaust in the urban atmosphere. The contribution of wood smoke to the ambient concentrations of benzene, ethene, and acetylene could lead to an overestimate of the contribution of motor vehicle tailpipe exhaust to atmospheric VOC concentrations.  相似文献   

2.
Fine particulate matter emitted during wood combustion is known to contribute a significant fraction of the total fine aerosol concentration in the atmosphere of both urban and rural areas. In the present study, additional organic compounds that may act as wood smoke tracers in the atmosphere are sought. Polar organic compounds in wood smoke fine particulate matter are converted to their trimethylsilyl derivatives and analyzed by gas chromatography/mass spectrometry. Silylation enables the detection of n-alkanols, plant sterols, and a number of compounds derived from wood lignin that have not previously been reported in wood smoke samples, as well as levoglucosan and related sugar anhydrides formed during the combustion of cellulose. The concentrations of these compounds measured in source emissions are compared to the concentrations in atmospheric fine particle samples collected at a rural background site and at two urban sites in California's San Joaquin Valley. On the basis of this analysis, the sugar anhydrides galactosan and mannosan can be listed along with levoglucosan as being among the most abundant organic compounds detected in all samples.  相似文献   

3.
Particulate matter emissions from a series of different Chinese coal combustion systems were collected and analyzed for elemental and organic carbon (EC, OC), and molecular markers. Emissions from both industrial boilers and residential stoves were investigated. The coal used in this study included anthracite, bituminite, and brown coal, as well as commonly used coal briquettes produced in China for residential coal combustion. Results show significant differences in the contribution of carbonaceous species to particulate mass emissions. Industrial boilers had much higher burn out of carbon yielding particulate matter emissions with much lower levels of OC, EC, and speciated organic compounds, while residential stoves had significantly higher emissions of carbonaceous particulate matter with emission rates of approximately 100 times higher than that of industrial boilers. Quantified organic compounds emitted from industrial boilers were dominated by oxygenated compounds, of which 46-68% were organic acids, whereas the dominate species quantified in the emissions from residential stoves were PAHs (38%) and n-alkanes (20%). An important observation was the fact that emission factors of PAHs and the distribution of hopanoids were different among the emissions from industrial and residential coal combustion even using the same coal for combustion. Although particulate matter emissions from industrial and residential combustion were different in many regards, picene was detected in all samples with detectable OC mass concentrations, which supports the use of this organic tracer for OC from all types of coal combustion. 17alpha(H),21beta(H)-29-norhopane was the predominant hopanoid in coal combustion emissions, which is different from mobile source emissions and may be used to distinguish emissions from these different fossil fuel sources.  相似文献   

4.
Gaseous and particulate emissions from prescribed burning in Georgia   总被引:1,自引:0,他引:1  
Prescribed burning is a significant source of fine particulate matter (PM2.5) in the southeastern United States. However, limited data exist on the emission characteristics from this source. Various organic and inorganic compounds both in the gas and particle phase were measured in the emissions of prescribed burnings conducted at two pine-dominated forest areas in Georgia. The measurements of volatile organic compounds (VOCs) and PM2.5 allowed the determination of emission factors for the flaming and smoldering stages of prescribed burnings. The VOC emission factors from smoldering were distinctly higher than those from flaming except for ethene, ethyne, and organic nitrate compounds. VOC emission factors show that emissions of certain aromatic compounds and terpenes such as alpha and beta-pinenes, which are important precursors for secondary organic aerosol (SOA), are much higher from active prescribed burnings than from fireplace wood and laboratory open burning studies. Levoglucosan is the major particulate organic compound (POC) emitted for all these studies, though its emission relative to total organic carbon (mg/g OC) differs significantly. Furthermore, cholesterol, an important fingerprint for meat cooking, was observed only in our in situ study indicating a significant release from the soil and soil organisms during open burning. Source apportionment of ambient primary fine particulate OC measured at two urban receptor locations 20-25 km downwind yields 74 +/- 11% during and immediately after the burns using our new in situ profile. In comparison with the previous source profile from laboratory simulations, however, this OC contribution is on average 27 +/- 5% lower.  相似文献   

5.
Biomass combustion emissions make a significant contribution to the overall particulate pollution in the troposphere. Wildland or prescribed burns and residential wood combustion emissions can vary due to differences in fuel, season, time of day, and the nature of the combustion. Inadequate understanding of the relevance of these biomass combustion emissions is due to the lack of characterization of open combustion emissions and the limited understanding of the differences between these and residential wood combustion. To provide new insight to biomass combustion emissions, sampling was conducted in several types of conditions. Semi-volatile organic compounds (SVOC) were collected during four separate prescribed burns in three different ecosystems, Mariposa Sequoia Grove within Yosemite National Park, CA, desert brushes of central rural Nevada, and Toiyabye National Forest near Lake Tahoe, NV. SVOC samples were also collected under controlled conditions for several wildland fuels, including conifer needles, wildland grasses, and sagebrush. Fireplace emissions from simulated residential wood combustion were also collected and are included here for comparison. A high degree of variability was found in the emissions of organic carbon, elemental carbon, levoglucosan, methoxy phenols, and organic acids. The variability in the emissions of levoglucosan does not correlate with the PM2.5 gravimetric mass and thus may affect source apportionment estimates.  相似文献   

6.
Emissions from residential fireplace and woodstove appliances burning fuels available from the San Francisco Bay area were sampled for polychlorinated dibenzodioxins and dibenzofurans (PCDDs/Fs), polychlorinated biphenyls (PCBs), hexachlorobenzene (HxCBz), particulate matter (PM), polycyclic aromatic hydrocarbons (PAHs), oxygenated PAHs, and the monosaccharide levoglucosan. Emission factors for these pollutants were determined, the first known characterization of this extent. Common California natural firewoods and manufactured artificial logs were tested under operating conditions intended to reflect domestic use patterns in the Bay area, which are primarily episodic burning for aesthetic reasons. Emission factors were determined by fuel type, fuel weight, mass emission rates, and energy output, highlighting differences between fuel and combustion facility type. Average PCDD/F emissions factors ranged from 0.25 to 1.4 ng toxic equivalency (TEQ)/kg of wood burned for natural wood fuels and 2.4 ng TEQ/kg for artificial logs. The natural wood emission factors are slightly lower than those which had been estimated for the U.S. inventory. Background-corrected PCBs emitted from woodstove/oak combustion (8370 ng/kg) are 3 orders of magnitude higher in mass than total PCDDs/Fs; however, their toxicity (0.014 ng TEQ/kg) is significantly lower. HxCBz emission factors varied from 13 to 990 ng/kg and were likely fuel- and appliance-specific. Relative PAH concentrations of particle-phase compounds and emission factors were consistent with others' findings. A total of 32 PAH compounds, ranging in concentration from 0.06 to 7 mg/kg, amounted to between 0.12 and 0.38% of the PM mass, depending on the wood and facility type. Preliminary analyses suggest relationships between wood combustion markers and PCDD/F levels.  相似文献   

7.
A chemical mass balance (CMB) receptor model using particle-phase organic compounds as tracers is applied to apportion the primary source contributions to fine particulate matter and fine particulate organic carbon concentrations in the southeastern United States to determine the seasonal variability of these concentrations. Source contributions to particles with aerodynamic diameter < or =2.5 microm (PM2.5) collected from four urban and four rural/suburban sites in AL, FL, GA, and MS during April, July, and October 1999 and January 2000 are calculated and presented. Organic compounds in monthly composite samples at each site are identified and quantified by gas chromatography/mass spectrometry and are used as molecular markers in the CMB model. The major contributors to identified PM2.5 organic carbon concentrations at these sites in the southeastern United States include wood combustion (25-66%), diesel exhaust (14-30%), meat cooking (5-12%), and gasoline-powered motor vehicle exhaust (0-10%), as well as smaller but statistically significant contributions from natural gas combustion, paved road dust, and vegetative detritus. The primary sources determined in the present study when added to secondary aerosol formation account for on average 89% of PM2.5 mass concentrations, with the major contributors to PM2.5 mass as secondary sulfate (30+/-6%), wood combustion (15+/-12%), diesel exhaust (16+/-7%), secondary ammonium (8+/-2%), secondary nitrate (4+/-3%), meat cooking (3+/-2%), gasoline-powered motor vehicle exhaust (2+/-2%), and road dust (2+/-2%). Distinct seasonality is observed in source contributions, including higher contributions from wood combustion during the colder months of October and January. In addition, higher percentages of unexplained fine organic carbon concentrations are observed in July, which are likely due to an increase in secondary organic aerosol formation during the summer season.  相似文献   

8.
The multivariate receptor models Positive Matrix Factorization (PMF) and Unmix were used along with the EPA's Chemical Mass Balance model to deduce the sources of PM2.5 at a centrally located urban site in Seattle, WA. A total of 289 filter samples were obtained with an IMPROVE sampler from 1996 through 1999 and were analyzed for 31 particulate elements including temperature-resolved fractions of the particulate organic and elemental carbon. All three receptor models predicted that the major sources of PM2.5 were vegetative burning (including wood stoves), mobile sources, and secondary particle formation with lesser contributions from resuspended soil and sea spray. The PMF and Unmix models were able to resolve a fuel oil combustion source as well as distinguish between diesel emissions and other mobile sources. In addition, the average source contribution estimates via PMF and Unmix agreed well with an existing emissions inventory. Using the temperature-resolved organic and elemental carbon fractions provided in the IMPROVE protocol, rather than the total organic and elemental carbon, allowed the Unmix model to separate diesel from other mobile sources. The PMF model was able to do this without the additional carbon species, relying on selected trace elements to distinguish the various combustion sources.  相似文献   

9.
Fine particle matter with aerodynamic diameter <2.5 microm (PM2.5) and gas-phase emissions from open burning of six fine (foliar) fuels common to fire-prone U.S. ecosystems are investigated. PM2.5 distribution is unimodal within the 10-450 nm range, indicative of an accumulation mode. Smoldering relative to flaming combustion shows smaller particle number density per unit time and median size. Over 100 individual organic compounds in the primarily carbonaceous (>70% by mass) PM2.5 are chemically speciated by gas chromatography/mass spectrometry. Expressed as a percent of PM2.5 mass, emission ranges by organic compound class are as follows: n-alkane (0.1-2%), polycyclic aromatic hydrocarbon (PAH) (0.02-0.2%), n-alkanoic acid (1-3%), n-alkanedioic acid (0.06-0.3%), n-alkenoic acid (0.3-3%), resin acid (0.5-6%), triterpenoid (0.2-0.5%), methoxyphenol (0.5-3%), and phytosterol (0.2-0.6%). A molecular tracer of biomass combustion, the sugar levoglucosan is abundant and constitutes a remarkably narrow PM2.5 mass range (2.8-3.6%). Organic chemical signatures in PM2.5 from open combustion of fine fuels differ with those of residential wood combustion and other related sources, making them functional for source-receptor modeling of PM. Inorganic matter [PM2.5 - (organic compounds + elemental carbon)] on average is estimated to make up 8% of the PM2.5. Wavelength dispersive X-ray fluorescence spectroscopy and ion chromatography identify 3% of PM2.5 as elements and water-soluble ions, respectively. Compared with residential wood burning, the PM2.5 of fine fuel combustion is nitrate enriched but shows lower potassium levels. Gas-phase C2-C13 hydrocarbon and C2-C9 carbonyl emissions are speciated by respective EPA Methods T0-15 and T0-11A. They comprise mainly low molecular weight C2-C3 compounds and hazardous air pollutants (48 wt % of total quantified volatile organic carbon).  相似文献   

10.
Experiments were conducted to examine the effects of dilution on fine particle mass emissions from a diesel engine and wood stove. Filter measurements were made simultaneously using three dilution sampling systems operating at dilution ratios ranging from 20:1 to 510:1. Denuders and backup filters were used to quantify organic sampling artifacts. For the diesel engine operating at low load and wood combustion, large decreases in fine particle mass emissions were observed with increases in dilution. For example, the PM2.5 mass emission rate from a diesel engine operating at low load decreased by 50% when the dilution ratio was increased from 20:1 to 350:1. Measurements of organic and elemental carbon indicate that the changes in fine particle mass with dilution are caused by changes in partitioning of semivolatile organic compounds. At low levels of dilution semivolatile species largely occur in the particle phase, but increasing dilution reduces the concentration of semivolatile species, shifting this material to the gas phase in order to maintain phase equilibrium. Emissions of elemental carbon do not vary with dilution. Organic sampling artifacts are shown to vary with dilution because of the combination of changes in partitioning coupled with adsorption of gas-phase organics by quartz filters. The fine particle mass emissions from the diesel engine operating at medium load did not vary with dilution because of the lower emissions of semivolatile material and higher emissions of elemental carbon. To measure partitioning of semivolatile materials under atmospheric conditions, partitioning theory indicates that dilution samplers need to be operated such that the diluted exhaust achieves atmospheric levels of dilution. Too little dilution can potentially overestimate the fine particle mass emissions, and too much dilution (with clean air) can underestimate them.  相似文献   

11.
Mercury emissions from wildfires are significant natural sources of atmospheric mercury, but little is known about what controls speciation of emissions important to mercury deposition processes. The goal of this study was to quantify gaseous elemental mercury (GEM) and particulate-phase mercury (PHg) emissions from biomass combustion to identify key factors controlling the speciation. Emissions were characterized in an exhaust stack 17 m above fires using a gaseous mercury analyzer and quartz-fiber filters. Fuels included fresh and air-dried leaves, needles, and branches with different fuel moistures (9-95% of dry weight) and combustion properties (e.g., from < 10 to 90% of fire durations characterized by flaming phases). Fuel moisture was the overall driving factor defining emissions, with GEM being the dominant fraction (> or = 95%) in low moisture fuels and substantial PHg contributions--up to 50% of total mercury emissions--in fresh fuels. High PHg emissions were observed during smoldering combustion whereas flaming-dominated fires showed insignificant PHg emissions. PHg mass emissions were correlated with particulate matter (PM; r2 = 0.67), organic carbon (OC; r2 = 0.63) and sulfur (S; r2 = 0.46) mass emissions, but not with elemental carbon (EC) nor with the total mercury emissions. These data suggest that the formation of PHg involves similar processes as the formation of particulate OC, for example condensation of volatile species onto preexisting smoke particles during cooling and dilution. Based on the observed relationship between PM and OC mass concentrations and published emission inventories, we estimate global PHg emissions by wildfires of 4-5 Mg yr(-1).  相似文献   

12.
Biomass pellets are emerging as a cleaner alternative to traditional biomass fuels. The potential benefits of using biomass pellets include improving energy utilization efficiency and reducing emissions of air pollutants. To assess the environmental, climate, and health significance of replacing traditional fuels with biomass pellets, it is critical to measure the emission factors (EFs) of various pollutants from pellet burning. However, only a few field measurements have been conducted on the emissions of carbon monoxide (CO), particulate matter (PM), and polycyclic aromatic hydrocarbons (PAHs) from the combustion of pellets. In this study, pine wood and corn straw pellets were burned in a pellet burner (2.6 kW), and the EFs of CO, organic carbon, elemental carbon, PM, and PAHs (EF(CO), EF(OC), EF(EC), EF(PM), and EF(PAH)) were determined. The average EF(CO), EF(OC), EF(EC), and EF(PM) were 1520 ± 1170, 8.68 ± 11.4, 11.2 ± 8.7, and 188 ± 87 mg/MJ for corn straw pellets and 266 ± 137, 5.74 ± 7.17, 2.02 ± 1.57, and 71.0 ± 54.0 mg/MJ for pine wood pellets, respectively. Total carbonaceous carbon constituted 8 to 14% of the PM mass emitted. The measured values of EF(PAH) for the two pellets were 1.02 ± 0.64 and 0.506 ± 0.360 mg/MJ, respectively. The secondary side air supply in the pellet burner did not change the EFs of most pollutants significantly (p > 0.05). The only exceptions were EF(OC) and EF(PM) for pine wood pellets because of reduced combustion temperatures with the increased air supply. In comparison with EFs for the raw pine wood and corn straw, EF(CO), EF(OC), EF(EC), and EF(PM) for pellets were significantly lower than those for raw fuels (p < 0.05). However, the differences in EF(PAH) were not significant (p > 0.05). Based on the measured EFs and thermal efficiencies, it was estimated that 95, 98, 98, 88, and 71% reductions in the total emissions of CO, OC, EC, PM, and PAHs could be achieved by replacing the raw biomass fuels combusted in traditional cooking stoves with pellets burned in modern pellet burners.  相似文献   

13.
On February 28, 2007, a severe smoke event caused by prescribed forest fires occurred in Atlanta, GA. Later smoke events in the southeastern metropolitan areas of the United States caused by the Georgia-Florida wild forest fires further magnified the significance of forest fire emissions and the benefits of being able to accurately predict such occurrences. By using preburning information, we utilize an operational forecasting system to simulate the potential air quality impacts from two large February 28th fires. Our "forecast" predicts that the scheduled prescribed fires would have resulted in over 1 million Atlanta residents being potentially exposed to fine particle matter (PM2.5) levels of 35 microg m(-3) or higher from 4 p.m. to midnight. The simulated peak 1 h PM2.5 concentration is about 121 microg m(-3). Our study suggests that the current air quality forecasting technology can be a useful tool for helping the management of fire activities to protect public health. With postburning information, our "hindcast" predictions improved significantly on timing and location and slightly on peak values. "Hindcast" simulations also indicated that additional isoprenoid emissions from pine species temporarily triggered by the fire could induce rapid ozone and secondary organic aerosol formation during late winter. Results from this study suggest that fire induced biogenic volatile organic compounds emissions missing from current fire emissions estimate should be included in the future.  相似文献   

14.
Summertime concentrations of fine particulate carbon in the southeastern United States are consistently underestimated by air quality models. In an effort to understand the cause of this error, the Community Multiscale Air Quality model is instrumented to track primary organic and elemental carbon contributions from fifteen different source categories. The model results are speciated using published source profiles and compared with ambient measurements of 100 organic markers collected at eight sites in the Southeast during the 1999 summer. Results indicate that modeled contributions from vehicle exhaust and biomass combustion, the two largest sources of carbon in the emission inventory, are unbiased across the region. In Atlanta, good model performance for total carbon (TC) is attributed to compensating errors: overestimation of vehicle emissions with underestimations of other sources. In Birmingham, 35% of the TC underestimation can be explained by deficiencies in primary sources. Cigarette smoke and vegetative detritus are not in the inventory, but contribute less than 3% of the TC at each site. After the model results are adjusted for source-specific errors using the organic-marker measurements, an average of 1.6 microgC m(-3) remain unexplained. This corresponds to 26-38% of ambient TC concentrations at urban sites and up to 56% at rural sites. The most likely sources of unexplained carbon are discussed.  相似文献   

15.
Chemical mass balance analysis was performed using a large dataset of molecular marker concentrations to estimate the contribution of biomass smoke to ambient organic carbon (OC) and fine particle mass in Pittsburgh, Pennsylvania. Source profiles were selected based on detailed comparisons between the ambient data and a large number of published profiles. The fall and winter data were analyzed with fireplace and woodstove source profiles, and open burning profiles were used to analyze the spring and summer data. At the upper limit, biomass smoke is estimated to contribute on average 520+/-140 ng-C m(-3) or 14.5% of the ambient OC in the fall, 210+/-85 ng-C m(-3) or 10% of the ambient OC in the winter, and 60 + 21 ng-C/m(-3) or 2% of the ambient OC in the spring and summer. In the fall and winter, there is large day-to-day variability in the amount of OC apportioned to biomass smoke. The levels of biomass smoke in Pittsburgh are much lower than in some other areas of the United States, indicating significant regional variability in the importance of biomass combustion as a source of fine particulate matter. The calculations face two major sources of uncertainty. First, the ambient ratios of levoglucosan, resin acids, and syringhaldehyde concentrations are highly variable implying that numerous sources with distinct source profiles contribute to ambient marker concentrations. Therefore, in contrast to previous CMB analyses, we find that at least three distinct biomass smoke source profiles must be included in the CMB model to explain this variability. Second, the marker-to-OC ratios of available biomass smoke profiles are highly variable. This variability introduces uncertainty of more than a factor of 2 in the amount of ambient OC apportioned to biomass smoke by different statistically acceptable CMB solutions. The marker-to-OC ratios of source profiles are critical parameters to consider when evaluating CMB solutions.  相似文献   

16.
Fine particle emissions from woodheaters are large contributors to ambient atmospheric pollution in a number of regional centers in Australia. The health impact of woodsmoke is not limited to the particle loading alone, and a wide range of toxic inorganic and organic compounds are also emitted as gases or adsorbed onto particles. The organic composition of woodsmoke was determined from two heater models operated using different airflow settings. Particle emission factors varied between 3 and 36 g per kg dry wood burned, with higher burn rates (open airflow) producing significantly less particle mass per kg wood burned than the low burn rates (closed airflow). Over 90 organic compounds were quantified from the vapor- and particle-phases, including furans, methoxyphenols, and other substituted aromatics, PAHs, maltols, and the sugar levoglucosan. Emission factors for the majority of the particle-phase compounds increased as the airflow was progressively closed, but decreased for some PAHs and other compounds found predominantly in the vapor-phase. Levoglucosan was the single most abundant compound, contributing 5-16% of the total particle mass. Although there was some variation in levoglucosan emissions between heater models, the fact that levoglucosan emissions vary relatively little between airflow conditions for a given heater provides the potential to use it as a general tracer for woodsmoke. In contrast, the mass fractions of many other particle-phase compounds were considerably higher when operated with a closed airflow.  相似文献   

17.
Source tests were conducted to analyze and characterize diagnostic key tracers for emissions from burning of coals with various ranks. Ambient aerosol particulate matter was also collected in three areas of China and a background area in Corvallis, OR (U.S.) to confirm the presence of tracers specific for coal smoke. The results showed a series of aliphatic and aromatic hydrocarbons and phenolic compounds, including PAHs and hydroxy-PAHs as the major tracers, as well as a significant unresolved complex mixture (UCM) of compounds. The tracers that were found characteristic of coal combustion processes included hydroxy-PAHs and PAHs. Atmospheric ambient samples from Beijing and Taiyuan, cities where coal is burned in northern China, revealed that the hydroxy-PAH tracers were present during the wintertime, but not in cities where coal is not commonly used (e.g., Guangzhou, South China). Thus, the mass of hydroxy-PAHs can be apportioned to coal smoke and the source strength modeled by summing the proportional contents of EC (elemental carbon), PAHs, UCM and alkanes with the hydroxy-PAHs.  相似文献   

18.
Emissions including polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs), polyaromatic hydrocarbons (PAHs), and volatile organic compounds (VOCs), were sampled from different wood-fired hydronic heater (HH) technologies. Four commercially available HH technologies were studied: a single-stage conventional combustor with natural updraft, a three-stage downdraft combustion system, a bottom-fed pellet burner, and a two-stage heater with both a combustion and gasification chamber. The fuel consisted of three wood types (red oak, white pine, and white ash), one hardwood pellet brand, and one fuel mixture containing 95% red oak and 5% residential refuse by weight. The various HHs and fuel combinations were tested in a realistic homeowner fuel-charging scenario. Differences in emission levels were found between HH technologies and fuel types. PCDD/PCDF emissions ranged from 0.004 to 0.098 ng toxic equivalency/MJ(input) and PAHs from 0.49 to 54 mg/MJ(input). The former was increased by the presence of 5% by weight refuse. The white pine fuel had the highest PAH emission factor, while the bottom fed pellet burner had the lowest. The major VOCs emitted were benzene, acetylene, and propylene. The highest emissions of PAHs, VOCs, and PCDDs/PCDFs were observed with the conventional unit, likely due to the rapid changes in combustion conditions effected by the damper opening and closing.  相似文献   

19.
The Yosemite Aerosol Characterization Study (YACS) was conducted in the summer of 2002 to investigate sources of regional haze in Yosemite National Park. Organic carbon and molecular source marker species size distributions were investigated during hazy and clear periods. More than 75% of the organic carbon mass was associated with submicron aerosol particles. Most molecular marker species for wood smoke, an important source of particulate matter during the study, were contained in submicron particles, although on some fire influenced days, levoglucosan shifted toward larger sizes. Various wood smoke marker species exhibited slightly different size distributions in the samples, suggesting different, size dependent emission or atmospheric processing rates of these species. Secondary biogenic compounds including pinic and pinonic acids were associated with smaller particles. Pinonaldehyde, however, exhibited a broader distribution, likely due to its higher volatility. Dicarboxylic acids were associated mainly with submicron particles. Hopanes, molecular markers for vehicle emissions, were mostly contained in smaller particles but exhibited some tailing into larger size classes.  相似文献   

20.
This paper presents emission factors (EFs) derived for a range of persistent organic pollutants (POPs) when coal and wood were subject to controlled burning experiments, designed to simulate domestic burning for space heating. A wide range of POPs were emitted, with emissions from coal being higher than those from wood. Highest EFs were obtained for particulate matter, PM10, (approximately 10 g/kg fuel) and polycyclic aromatic hydrocarbons (approximately 100 mg/ kg fuel for sigmaPAHs). For chlorinated compounds, EFs were highest for polychlorinated biphenyls (PCBs), with polychlorinated naphthalenes (PCNs), dibenzo-p-dioxins (PCDDs) and dibenzofurans (PCDFs) being less abundant. EFs were on the order of 1000 ng/kg fuel for sigmaPCBs, 100s ng/ kg fuel for sigmaPCNs and 100 ng/kg fuel for sigmaPCDD/Fs. The study confirmed that mono- to trichlorinated dibenzofurans, Cl1,2,3DFs, were strong indicators of low temperature combustion processes, such as the domestic burning of coal and wood. It is concluded that numerous PCB and PCN congeners are routinely formed during the combustion of solid fuels. However, their combined emissions from the domestic burning of coal and wood would contribute only a few percent to annual U.K. emission estimates. Emissions of PAHs and PM10 were major contributors to U.K. national emission inventories. Major emissions were found from the domestic burning for Cl1,2,3DFs, while the contribution of PCDD/F-sigmaTEQ to total U.K. emissions was minor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号