首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using surface flow constructed wetlands for long-term phosphorus (P) retention presents a challenge due to the fact that P is stored primarily in the sediments. Subsurface flow wetlands have the potential to greatly increase P retention; however, the substrate needs to have both high hydraulic conductivity and high P sorption capacity. The objective of our study was to assess the P retention capacity of two substrates, masonry sand and lightweight expanded shale. We used sorption/desorption isotherms, flow-through column experiments, and pilot-scale wetlands to quantify P retained from treated municipal wastewater. Langmuir sorption isotherms predicted that the expanded shale has a maximum sorption capacity of 971 mg/kg and the masonry sand 58.8 mg/kg. In column desorption and column flow-through experiments, the masonry sand desorbed P when exposed to dilute P solutions. The expanded shale, however, had very little desorption and phosphorus did not break through the columns during our experiment. In pilot cells, masonry sand retained (mean +/- standard deviation) 45 +/- 62 g P/m2/yr and expanded shale retained 164 +/- 110 g P/m2/yr. We conclude that only the expanded shale would be a suitable substrate for retaining P in a subsurface flow wetland.  相似文献   

2.
The soil P extracted by Olsen's, Bray's P-1, Morgan's, North Carolina, 0.01M-CaCl2, acidic N-ammonium acetate and isotopic-exchange methods of determining available P were related to the forms of soil P and to other soil properties. Correlations between soil tests were higher when both test values were well correlated with a common P form, thereby indicating their similarity in selective dissolution of specific forms. Linear regression equations derived by stepwise inclusion of significant independent variables in order of importance for explanation of variations in soil-test values, indicated that the greatest contribution to Olsen's or Bray's test values was aluminium-P, to the isotopic exchange P was iron-P and to North Carolina test values was calcium-P. Dithionite-extractable aluminium and iron, organic matter, soil texture, base saturation and soil reaction were included in regression equations to reflect their significant influence on the dissolution of specific P forms and secondary reactions occurring during the extraction process. Based on observations for 343 differing soils, regression equations to predict soil-test values from significant P forms and soil properties accounted for more than 50% of variations in P soil-test values for Olsen's, Bray's, North Carolina and 0.01 M-CaCl2 extraction methods. No improvement was found when P forms were included regardless of significance and significant soil properties were added to the regression equations.  相似文献   

3.
Most subsurface flow treatment wetlands, also known as reed bed or root zone systems, use sand or gravel substrates to reduce organics, solids, and nutrients in septic tank effluents. Phosphorus (P) retention in these systems is highly variable and few studies have identified the fate of retained P. In this study, two substrates, expanded shale and masonry sand, were used as filter media in five subsurface flow pilot-scale wetlands (2.7 m3). After 1 year of operation, we estimated the annual rate of P sorption by taking the difference between total P (TP) of substrate in the pilot cells and TP of substrate not exposed to wastewater (control). Means and standard deviations of TP retained by expanded shale were 349 +/- 171 mg kg(-1), respectively. For a substrate depth of 0.9 m, aerial P retention by shale was 201 +/- 98.6 g of P m(-2) year(-1), respectively. Masonry sand retained an insignificant quantity of wastewater P (11.9 +/- 21.8 mg kg(-1)) and on occasion exported P. Substrate samples were also sequentially fractionated into labile P, microbial P, (Fe + Al) P, humic P, (Ca + Mg) P, and residual P. In expanded shale samples, the greatest increase in P was in the relatively permanent form of (Fe + Al) P (108 mg kg(-1)), followed by labile P (46.7 mg kg(-1)) and humic P (39.8 mg kg(-1)). In masonry sand, there was an increase in labile P (9.71 mg kg(-1)). Results suggest that sand is a poor candidate for long-term P storage, but its efficiency is similar to that reported for many sand, gravel, and rock systems. By contrast, expanded shale and similar products with high hydraulic conductivity and P sorption capacity could greatly improve performance of P retention in constructed wetlands.  相似文献   

4.
We developed a model to predict the availability of PAHs and PCBs to earthworms (Lumbricus terrestris L.) in soils. We related the uptake of PAHs and PCBs by earthworms to the extraction with octadecyl-modified silica disks (C18 disks). Eleven soils (data set A) were used to develop the model, and 14 additional soils (data set B) were used to validate it independently. The biota-to-soil accumulation factors (BSAFs) of higher molecular weight PAHs (> or =202 g mol(-1)) and PCBs were higher than the corresponding Cl8 disk-soil partition coefficients (Kdisk) in the soils of data set A. This suggested that PAHs and PCBs were not only partitioned between soil and earthworms but also selectively ingested or metabolized. Nevertheless, we could predict the BSAFs of individual PAHs and PCBs for data set A by regression equations of log BSAF on log Kdisk (r=0.47-0.87). To predict the BSAFs of all PAHs and PCBs, respectively, we derived a model for each compound class that uses Kdisk and K(ow) values. Both the compound and the compound-class specific model were suitable to predict the BSAFs of PAHs and PCBs in data set B within a factor of 10-15.  相似文献   

5.
A data set constructed from research trials published between 1979 and 1998 was used to derive equations to adjust published tabular values for the rumen-undegradable protein (RUP) content of feeds to better predict the passage of nonammonia nonmicrobial N (NANMN) to the small intestine of lactating dairy cows. Both linear and nonlinear forms of equations were considered for making adjustments. Iterative processes were used to estimate equation parameters. A logistic equation was developed and considered to be the most optimal for adjustment of published tabular RUP contents of feeds. The equation is a function of dietary dry matter intake (DMI) and includes terms for tabular RUP and nonprotein N contents of individual feeds. The equation has a standard error of prediction of 69.29 g of NANMN/ d per cow and a root mean square prediction error of 104.63 g of NANMN/d per cow. Independent evaluation of the equation indicated that the concept of variable RUP content for feeds based on DMI is correct. Further refinements may be needed as other data become available to quantify the effects of additional factors on the RUP value of feeds.  相似文献   

6.
Giles LR 《Meat science》1983,8(1):33-40
Two automatic backfat measurement devices (the New Zealand Hennessy & Chong Fat Depth Indicator (FDI) and the Danish Meat Fat Automatic (MFA) probe) were compared with the Optical Intrascope (OI) as alternative devices to predict P(2) backfat thickness (65 mm from the dorsal mid-line at the level of the posterior edge of the head of the last rib) in pig carcass classification schemes. Prediction equations of P(2) backfat thickness (mm) taken on the cold carcass (cold P(2)) were developed for two operators who made independent hot carcass P(2) measurements (hot P(2)) with the O1, FDI and MFA on each of 114 carcasses. The OI and FDI were found to be of equivalent precision in predicting cold P(2) with the same operator (residual standard deviation, RSD = 1·29 and 1·30, respectively). The MFA was significantly (P < 0·05) less precise (RSD = 1·81). Between operator measurements of hot P(2) with the FDI (RSD = 1·17) had significantly (P < 0·05) less variation compared with the OI and MFA (RSD = 1·27).  相似文献   

7.
Removal efficiency and elimination rates of 11 pharmaceuticals and personal care products (PPCPs)were measured in two subsurface horizontal flow constructed wetlands (SSFs) characterized by different water depths (i.e. 0.3 and 0.5 m) in a 2-year study. Dissolved and particulate phases of wastewater and gravel samples were collected and analyzed. The PPCP influent concentration ranged from 1 to 25 microg L(-1). The best removal efficiency was found in the shallower bed SSF due to its less negative redox potential. PPCPs were classified in four groups according to their removal behavior: (i) the efficiently removed (>80%) namely caffeine, salicylic acid, methyl dihydrojasmonate, and carboxy-ibuprofen, (ii) the moderately removed (50-80%) namely ibuprofren, hydroxy-ibuprofen, and naproxen, (iii) the recalcitrant to the elimination namely ketoprofen and diclofenac, and,finally, (iv) compounds that were eliminated by hydrophobic interactions namely polycyclic musks (i.e. galaxolide and tonalide). These compounds were removed more than 80% from the effluent but occurred at high concentrations (up to 824 microg kg(-1)) in the gravel bed. Accordingly, their elimination by sorption onto the organic matter retained is the predominant removal mechanism. Furthermore, the constructed wetland clogging appears to induce a negative effect in the PPCP degradation in the SSF evaluated. The PPCP elimination classified as efficiently and moderately removed through the shallow bed fitted to either zero- or a first-order areal kinetics. Finally, the apparent distribution coefficients between suspended solids (Kd'ss) or gravel bed (Kd'gb) and water were determined in the different sampling points of the wetland obtaining values comparable to the described previously for sewage sludge.  相似文献   

8.
9.
Subsurface flow constructed wetlands (SSFs) constitute a wastewater treatment alternative to small communities due to the low operational cost, reduced energy consumption, and no sewage sludge production. Although much information is available about conventional water quality parameters in SSF constructed wetlands, few data are available regarding specific contaminants. In this paper, we focus on the behavior of three widely used pharmaceuticals (clofibric acid, ibuprofen, and carbamazepine) in two pilot SSF constructed wetlands planted with Phragmites australis and characterized by different water depths (i.e., 0.3 and 0.5 m). These SSFs partially treat the urban wastewater from a housing development (ca. 200 inhabitants). The three pharmaceuticals and bromide were continuously injected into the two SSFs during a period of 150-200 h, and the effluent concentration was simultaneously measured as 6 h composite samples. Their removal efficiency was calculated from the injected concentration, and the hydraulic parameters were evaluated and compared to bromide as tracer. In this regard, the behavior of clofibric acid was similar to that of bromide, and no sorption into the gravel bed occurred. On the other hand, carbamazepine showed a higher sorption than bromide and clofibric acid, which is attributable to its interaction on the gravel bed. Accordingly, the use of clofibric acid as a hydraulic tracer is proposed, taking into account its low residence time. Ibuprofen removal was 81% in the shallow SSF and 48% in the deep one. Differences in removal efficiency could be explained by the less anaerobic environment of the shallow wetland.  相似文献   

10.
The impact of mobile colloids on the transport of phosphorus in the subsurface environment is not well understood. We hypothesized that interactions between metals, organic matter, and P control the dynamics of mobile colloidal P species in excessively fertilized sandy soils. The effect of UV irradiation and additions of 32P, orthophosphate, Fe, Al, and NaF on the concentration of colloidal P was examined using gel filtration chromatography. In addition, molybdate unreactive P (MUP) was characterized using phosphomonoesterase assays. The high molecular mass reactive P (HMMRP) fraction did not react to orthophosphate additions, increased upon Al and Fe additions and decreased upon NaF addition and UV irradiation. These results support the hypothesis that HMMRP is present as organic matter-metal-orthophosphate complexes. The concentration of high molecular mass unreactive P (HMMUP) decreased upon UV irradiation. The MUP concentration slightly decreased upon incubation with phytase and acid phosphatase. These observations fitted well to the "protection" hypothesis, where hydrolyzable P bonds are protected from monoesterase attack through occlusion in colloidal material. Taken together, this study indicates the high potential for subsurface P loss by colloidal particles in soils excessively fertilized with animal manure.  相似文献   

11.
Diffuse phosphorus (P) loads to a small lake, Friary Lough, in a 1 km2 agricultural subcatchment were quantified over 90 years using a palaeolimnological model. The model assumes that lake total phosphorus (TP) is lost to the sediments and to the lake outflow during periods of steady-state or is also stored within the water column during periods of non-steady-state behavior. Reconstructed TP loads during the 1991-1995 time interval of 2.05-2.53 g m-2 yr-1 are verified by hydrochemical monitoring results from the lake inflow during 1997-1998. This provides evidence for the accuracy of the palaeolomnological model and also that TP loads to the lake can be accounted for from external catchment runoff. An analysis of the TP load data in terms of catchment exports shows that there was a linear rate of increase from ca. 1946 to 1995 of 1.20-1.56 kg km-2 yr-1. The rate of increase is similar to river P load data in the larger 1480 km2 catchment taken over 17 years. The rate of TP increase to the lake is interpreted with regard to current soil P models that propose increasing and threshold soil P concentrations as the cause for increasing diffuse P loss in runoff.  相似文献   

12.
The aim of the paper is to develop a mathematical model to predict vertical wicking behaviour of woven fabric. The first part of this series (Part I) has dealt with the mathematical model for predicting vertical wicking through yarn. In this part a model has been proposed to predict vertical wicking of the woven fabric, based on the developed yarn model. In order to model the flow through woven fabric along with the vertical flow through liquid carrying threads, the horizontal flow through transverse threads has also been taken into account. A simplified fabric geometrical concept (inclined tube geometry) and Peirce geometry for plain woven fabric have been used to define the fabric structure. Warp and weft linear density, fabric sett and yarn crimp have been considered in the fabric modelling. The theoretical wicking values of the yarn and fabric made from that yarn have been compared. Experimental verification of the model has been carried out using polyester and polypropylene fabrics. The model is found to predict the wicking height with time through the yarns and fabrics with reasonable accuracy.  相似文献   

13.
Reactive tracer tests were conducted to evaluate the relationship between contaminant mass reduction, Rm, and flux reduction, Rj, in laboratory experiments with porous media contaminated with a dense nonaqueous phase liquid (DNAPL). The reduction in groundwater contaminant flux resulting from partial mass removal was obtained from continuous and pulsed cosolvent and surfactant flushing dissolution tests in laboratory flow chambers packed with heterogeneous porous media. Using the streamtubes concept a Lagrangian analytical solution was applied to study the contaminant dissolution. The analytical solution was independently parametrized using nonreactive and reactive tracertests and the predicted dissolution was compared to the observed data. Analytical solution parameters related to aquifer hydrodynamic heterogeneities were determined from a nonreactive tracer, while those related to DNAPL spatial distribution heterogeneity were obtained from a reactive tracer. Reactive travel time variance, derived from this combination of tracers, was used to predict the relationship between Rm and Rj. Predictions based on the tracer tests closely matched measured dissolution data, suggesting that tracers can be used to characterize the DNAPL spatial distribution heterogeneity controlling the dissolution behavior. Experimental results demonstrated that increased reactive travel time variance led to greater flux reduction for a given partial mass removal.  相似文献   

14.
Theoretical models have been proposed in this article (Parts I and II) to predict the vertical wicking behaviour of yarns and fabrics based on different fibre, yarn and fabric parameters. The first part of this article deals with the modelling of flow through yarn during vertical wicking, whereas the second part deals with the modelling of vertical wicking through the fabric. The yarn model has been developed based on the Laplace equation and the Hagen–Poiseuille’s equation on fluid flow; pore geometry has been determined as per the yarn structure. Factors such as fibre contact angle, number of filaments in a yarn, fibre denier, fibre cross‐sectional shape, yarn denier and twist level in the yarn have been taken into account for development of the model. Lambertw, a mathematical function, has been incorporated, which helps to predict vertical wicking height at any given time, considering the gravitational effects. Experimental verification of the model has been carried out using polyester yarns. The model was found to predict the wicking height with time through the yarns with reasonable accuracy. Based on the proposed yarn model, a mathematical model has been developed to predict the vertical wicking through plain woven fabric in the second part of this article.  相似文献   

15.
The risk posed by soil contaminants strongly depends on their bioavailability. In this study, a partition-based sampling method was applied as a tool to estimate bioavailability in soil. The accumulation of organic micropollutants was measured in two earthworm species (Eisenia andrei and Aporrectodea caliginosa) and in 30-microm poly(dimethylsiloxane) (PDMS)-coated solid-phase micro extraction (SPME) fibers after exposure to two field-contaminated soils. Within 10 days, steady state in earthworms was reached, and within 20 days in the SPME fibers. Steady-state concentrations in both earthworm species were linearly related to concentrations in fibers over a 10,000-fold range of concentrations. Measured concentrations in earthworms were compared to levels calculated via equilibrium partitioning theory and total concentrations of contaminants in soil. In addition, freely dissolved concentrations of contaminants in pore water, derived from SPME measurements, were used to calculate concentrations in earthworms. Measured concentrations in earthworms were close to estimated concentrations from the SPME fiber measurements. Freely dissolved concentrations of contaminants in pore water, derived from SPME measurements, were used to calculate bioconcentration factors (BCF) in earthworms. A plot of log BCFs against the octanol-water partition coefficient (log Kow) was linear up to a log Kow of 8. These results show that measuring concentrations of hydrophobic chemicals in a PDMS-coated fiber represents a simple tool to estimate internal concentrations of chemicals in biota exposed to soil.  相似文献   

16.
17.
烟田土壤养分移动规律研究--Ⅰ.氮、磷、钾的移动规律   总被引:1,自引:0,他引:1  
研究了烟田地膜覆盖栽培和裸栽条件下土壤中碱解氮、有效磷、交换性钾和有机质含量变化规律。结果表明 ,土壤中碱解氮和交换性钾的移动性较大 ,有效磷的移动性较小 ;覆膜栽培土壤中碱解氮和交换性钾明显朝上层土壤移动富集 ,裸栽条件下则朝下层土壤移动 ,裸栽分次施肥与一次施肥土壤中碱解氮、交换性钾含量的变化趋势相似。  相似文献   

18.
Soil organic carbon (SOC) models such as the Rothamsted Carbon Model (RothC) have been used to estimate SOC dynamics in soils over different time scales but, until recently, their ability to accurately predict SOC stocks/carbon dioxide (CO(2)) emissions from salt-affected soils has not been assessed. Given the large extent of salt-affected soils (19% of the 20.8 billion ha of arable land on Earth), this may lead to miss-estimation of CO(2) release. Using soils from two salt-affected regions (one in Punjab, India and one in South Australia), an incubation study was carried out measuring CO(2) release over 120 days. The soils varied both in salinity (measured as electrical conductivity (EC) and calculated as osmotic potential using EC and water content) and sodicity (measured as sodium adsorption ratio, SAR). For soils from both regions, the osmotic potential had a significant positive relationship with CO(2)-C release, but no significant relationship was found between SAR and CO(2)-C release. The monthly cumulative CO(2)-C was simulated using RothC. RothC was modified to take into account reductions in plant inputs due to salinity. A subset of non-salt-affected soils was used to derive an equation for a "lab-effect" modifier to account for changes in decomposition under lab conditions and this modifier was significantly related with pH. Using a subset of salt-affected soils, a decomposition rate modifier (as a function of osmotic potential) was developed to match measured and modelled CO(2)-C release after correcting for the lab effect. Using this decomposition rate modifier, we found an agreement (R(2) = 0.92) between modelled and independently measured data for a set of soils from the incubation experiment. RothC, modified by including reduced plant inputs due to salinity and the salinity decomposition rate modifier, was used to predict SOC stocks of soils in a field in South Australia. The predictions clearly showed that SOC stocks are reduced in saline soils. Therefore both the decomposition rate modifier and plant input modifier should be taken into account when accounting for SOC turnover in saline soils. Since modeling has previously not accounted for the impact of salinity, our results suggest that previous predictions may have overestimated SOC stocks.  相似文献   

19.
Molly is a deterministic, mechanistic, dynamic model representing the digestion, metabolism, and production of a dairy cow. This study compared the predictions of enteric methane production from the original version of Molly (MollyOrigin) and 2 new versions of Molly. Updated versions included new ruminal fiber digestive parameters and animal hormonal parameters (Molly84) and a revised version of digestive and ruminal parameters (Molly85), using 3 different ruminal volatile fatty acid (VFA) stoichiometry constructs to describe the VFA pattern and methane (CH4) production (g of CH4/d). The VFA stoichiometry constructs were the original forage and mixed-diet VFA constructs and a new VFA stoichiometry based on a more recent and larger set of data that includes lactate and valerate production, amylolytic and cellulolytic bacteria, as well as protozoal pools. The models’ outputs were challenged using data from 16 dairy cattle 26 mo old [standard error of the mean (SEM) = 1.7], 82 (SEM = 8.7) d in milk, producing 17 (SEM = 0.2) kg of milk/d, and fed fresh-cut ryegrass [dry matter intake = 12.3 (SEM = 0.3) kg of DM/d] in respiration chambers. Mean observed CH4 production was 266 ± 5.6 SEM (g/d). Mean predicted values for CH4 production were 287 and 258 g/d for MollyOrigin without and with the new VFA construct. Model Molly84 predicted 295 and 288 g of CH4/d with and without the new VFA settings. Model Molly85 predicted the same CH4 production (276 g/d) with or without the new VFA construct. The incorporation of the new VFA construct did not consistently reduce the low prediction error across the versions of Molly evaluated in the present study. The improvements in the Molly versions from MollyOrigin to Molly84 to Molly85 resulted in a decrease in mean square prediction error from 8.6 to 8.3 to 4.3% using the forage diet setting. The majority of the mean square prediction error was apportioned to random bias (e.g., 43, 65, and 70% in MollyOrigin, Molly84, and Molly85, respectively, on the forage setting, showing that with the updated versions a greater proportion of error was random). The slope bias was less than 2% in all cases. We concluded that, of the versions of Molly used for pastoral systems, Molly85 has the capability to predict CH4 production from grass-fed dairy cows with the highest accuracy.  相似文献   

20.
Supercritical fluid extraction (SFE) with pure carbon dioxide was used to obtain desorption curves of PAHs from four contaminated industrial soils. Total PAH concentrations ranged from 1495 to 2439 mg/kg. The desorption curves were fitted with a simple two-site model to determine the rapidly released fraction (F) representing bioavailability of PAHs. The Fdata obtained under various SFE pressures were compared with degradation results of a composting method applied on the soils. After composting and consequent long-term maturation, the residual PAH contaminations ranged from 4 to 36% of the original values. A possible explanation of the result variations is the different bioavailability of the pollutants. The best correlations between degradation results and F fraction were obtained applying 50 degrees C and 300 bar. The F values gave very good agreement with degradation efficiencies and the total regression coefficients (r) ranged from 0.81 to 0.99. The degradation results together with bioavailable fractions appeared to be consistentwith organic carbon contents in the soils and with volatile fractions of organics. The results indicate that SFE could be a rapid testto predict bioremediation results of composting of PAH-contaminated soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号