首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 822 毫秒
1.
A novel Mg-rare earth(Nd,Ce) coating containing intermetallic compound was fabricated on the surface of the AZ91D magnesium alloy by bathing the sample in a NaCl-KCl-LiCl-NdCl_3-CeCl_3 molten salt. The cross-sectional morphology, microstructure and phase composition of the coating were investigated by scanning electron microscopy(SEM), transmission electron microscopy(TEM) and energy dispersive spectroscopy(EDS). The corrosion resistance was characterized by the potentiodynamic polarization curves. The SEM observation indicated that a continuous and compact diffusion coating was obtained on the surface of SMATed AZ91D magnesium alloy and the XRD and TEM investigations revealed that the new phases were Al_2Ce and Al_2Nd intermetallic. The potentiodynamic polarization curves showed that the Mg-RE coating improved the corrosion resistance of the AZ91D magnesium alloy, and the corrosion current density of the coated sample was about 1510 mA /cm~2 lower than the uncoated sample.  相似文献   

2.
The shrouded plasma spray process was used to deposit NiCrAlY, Ni-20Cr, Ni3Al, and Stellite-6 metallic coatings on a Ni-based superalloy (62Ni-23Cr-1.48Al-0.80Mn-0.37Si-0.10Cu-0.025C-bal Fe). NiCrAlY was used as a bond coat in all cases. Hot corrosion studies were conducted on uncoated as well as plasma-spray-coated superalloy specimens after exposure to molten salt at 900 °C under cyclic conditions. The thermogravimetric technique was used to establish the kinetics of corrosion. X-ray diffraction (XRD), scanning electron microscopy/energy-dispersive X-ray analysis (SEM/EDAX) and electron-probe microanalysis techniques were used to analyze the corrosion products. The uncoated superalloy suffered accelerated corrosion in the form of intense spalling of the scale. The NiCrAlY coated specimen showed a minimum weight gain, whereas the Stellite-6 indicated a maximum weight gain among the coatings studied. All the coatings were found to be successful in developing resistance against hot corrosion, which may be attributed to the formation of oxides, and spinels of nickel, aluminum, chromium, or cobalt.  相似文献   

3.
Dicalcium-phosphate dehydrate, converted to hydroxyapatite by post-treatment in sodium hydroxide, and fluoridated hydroxyapatite were electrodeposited on commercially pure magnesium substrates that were pretreated with sodium hydroxide. The coatings’ crystalline structure, thickness, scratch hardness, morphology and chemical composition were characterised by GIXRD, microscratch testing platform, SEM and EDS. The results showed that the apatite coatings had highly crystalline structure, acceptable scratch hardness, flake-like morphology and acceptable chemical composition. Corrosion behaviour of the uncoated and coated substrates was investigated by potentiodynamic polarization and immersion tests in simulated body fluid. The coated substrates, especially fluoridated hydroxyapatite coated substrates, showed significantly lower corrosion rates compared to uncoated substrates. The polarisation curves showed that the coatings hindered anodic reactions; the corrosion potentials were shifted toward less-negative. In general, this study concluded that the corrosion rate of commercially pure magnesium could be significantly decreased to be a candidate for future cost-effective biodegradable orthopaedic implants.  相似文献   

4.
Considering the properties of the valve metal alloys with specific corrosion resistance and electrocatalytic ac tivity, an investigation was made to examine if nickel-niobium alloy could serve as the anode material for molten carbo nate fuel cell (MCFC). An attempt was made to produce nickel-niobium surface alloy by an electrochemical process in the molten fluorides and to testify its performance required by the MCFC anode. Experimental results indicated that the corrosion resistance as well as polarization performance of the nickel electrode was improved by the surface alloying.As far as the corrosion resistance and polarization performance is concerned, the nickel-niobium surface alloy can be considered as a candidate material for the anode of MCFC.  相似文献   

5.
采用静电自组装技术将SiO2纳米颗粒均匀涂覆在金属纤维表面, 研究涂覆前后金属纤维毡的过滤精度、透气量、泡点压力、耐磨性及耐蚀性。结果表明, 经过纳米自组装涂覆后, 金属纤维毡具有良好的疏水性和通量匹配, 同时过滤精度、耐腐蚀性和耐磨性也有所提高, 有助于延长金属纤维毡在复杂腐蚀介质中的使用寿命。  相似文献   

6.
The optimum chemical passivation process of the rare earth metal (REM) conversion coating on the Cf/6061Al composite surface was introduced in this paper and its polarization curves properties were investigated. Ridge-like coatings were found by scanning electro microscope (SEM) observations, and the Al matrix and carbon fibre reinforcement were both coated with Ce conversion coatings, with some minor cracks. The energy dispersive spectroscopy (EDS) plane scan analysis indicates that the major elements in the coating are Ce, O, Si, Al and the Ce content reaches 47.48%(mass fraction). The Ce conversion coatings increase the corrosion resisting properties of Cf/6061Al composite, with a higher free corrosion potential (Ecorr) and a lower free corrosion current density (icorr) for the coated composite than those of the bare composite. And the Boehmite-treatment would enhance the corrosion resistance of the REM conversion coating. The cathodic polarization and anodic polarization were retarded by REM conversion coating, resulting in an improved corrosion resistance.  相似文献   

7.
Grade A ship-building steel-AISI 2304 duplex stainless steel composite plates were manufactured via explosive welding. The AISI 2304 plates were used to clad the Grade A plates. Optical microscopy studies were conducted on the joining interface for characterization of the manufactured composite plates. Notch impact, tensile-shear, microhardness, bending and twisting tests were carried out to determine the mechanical properties of the composites. In addition, the surfaces of fractured samples were examined by scanning electron microscopy (SEM), and neutral salt spray (NSS) and potentiodynamic polarization tests were performed to examine corrosion behavior. Near the explosion zone, the interface was completely flat, but became wavy as the distance from the explosion zone increased. The notch impact tests indicated that the impact strength of the composites decreased with increasing distance from the explosion zone. The SEM studies detected brittle behavior below the impact transition temperature and ductile behavior above this temperature. Microhardness tests revealed that the hardness values increased with increasing distance from the explosion zone and mechanical tests showed that no visible cracking or separation had occurred on the joining interface. The NSS and potentiodynamic polarization tests determined that the AISI 2304 exhibited higher corrosion resistance than the Grade A steel.  相似文献   

8.
Highly porous Ti-Cu alloy foams were produced by powder metallurgy method for implant applications. Ti-Cu alloys were prepared with 3, 5, 7, and 10 wt pct Cu contents in order to determine optimum Cu addition. Cu addition enhances sinterability, and the Ti-Cu compacts were sintered at lower temperatures and times than pure Ti. Specimens were coated with a TiN film to enhance wear and corrosion resistance. Sintered specimens were precipitation hardened (aged) in order to increase mechanical properties. Corrosion properties of foams were examined by electrochemical techniques, such as potentiodynamic polarization, cyclic polarization, Tafel extrapolation, linear polarization resistance, and open-circuit potential measurement. Effect of Cu content, TiN coating, pH, and fluoride content of artificial saliva on electrochemical corrosion behavior of specimens was investigated.  相似文献   

9.
Constant load creep and stress-rupture properties of boron and silicon carbide coated boron, BORSIC®, filament reinforced aluminum alloys were measured at 300°, 400°, and 500°C. The mean stresses for 1000 hr rupture life at the three test temperatures were 96,000, 82,000, and 72,000 psi, respectively. Elongation in creep tests was checked by using scribed lines, and this technique indicated that grip-mounted extensometers were inadequate for precision measurement due to shear of aluminum in the grips. A maximum of 0.2 pct plastic elongation was measured, which corresponds to the creep properties of the filaments. Comparison of Borsic composite results with data for composites fabricated with uncoated boron filament showed that the short-time rupture strengths of the two materials were similar, but that the stress for rupture of the boron filament composites decreased much more rapidly with increasing rupture time than did the stress for rupture in the Borsic filament composites, due to degrading reactions of the uncoated boron with the matrix. Fracture analysis was performed using optical metallography and scanning electron microscopy. The analysis indicated that the major portion of filament failures in the region of the fracture surface at elevated temperatures initiated at the outer surface of the filament, whereas filament failures that initiated in the region of the core were more common in room temperature tensile specimens. The amount of plastic flow in the matrix increased markedly with increasing temperature, but filament pullout lengths were far less than those predicted by a simple shear-lag theory on the basis of the shear strength of the matrix.  相似文献   

10.
本文提出了利用循环阳极极化曲线研究转化膜耐腐蚀性能的方法。介绍了 Al60 61 /Si CP复合材料表面稀土转化膜工艺。将稀土转化膜与其它转化膜的耐腐性能进行了比较。利用循环阳极极化曲线的“相对环面积”研究转化膜耐腐蚀性能能够得出很好的规律性。  相似文献   

11.
The effectiveness of a self-assembled silane monolayer as protection for beryllium against microbiologically influenced corrosion (MIC) was demonstrated. Four-point bend tests on coated and uncoated beryllium samples were conducted after microbiological exposures, and the effectiveness of these coatings as MIC protection was reported through mechanical property evaluations. Application of the silane monolayer to the beryllium surfaces was found to prevent degradation of the failure strength and displacement-to-failure of beryllium in bending. In contrast, the uncoated beryllium samples exhibited a severe reduction in these mechanical properties in the presence of the marine Pseudomonas bacteria. The potentiodynamic measurements showed that both the uncoated and coated samples pitted at the open-circuit potential. However, the size and distribution of the corrosion pits formed on the surface of the beryllium samples were significantly different for the various cases (coated vs uncoated samples exposed to control vs inoculated medium). This study demonstrates the following: (1) the deleterious effects of MIC on the mechanical properties of beryllium and (2) the potential for developing fast, easy, and cost-effective MIC protection for beryllium metal using silane self-assemblies.  相似文献   

12.
A study has been conducted examining the thermal fatigue characteristics of an α2/SiC composite; in particular, SCS-6 reinforced Ti-24Al-11Nb (at. pct). The effort included the investigation of the effect of the environment by cycling coated and uncoated specimens in air and in an inert environment. Damage assessment was determined by postcycling room-temperature tension testing as well as by microstructural examination, including both optical microscopy and scanning electron microscopy (SEM). Significant reductions in postcycling tensile strength were observed for coated and uncoated specimens thermally cycled in air from 150 °C to 815 °C for 500 cycles, while no measurable loss of strength was found for specimens cycled in a low-pressure inert environment under otherwise identical conditions. The synergistic effect of residual stresses due to a coefficient of thermal expansion (CTE) mismatch and environment on the degradation of tensile properties of the thermally cycled composite is found to be the critical damage evolution mechanism for both coated and uncoated composites cycled in air. Residual stresses alone were found not to be critical in creating damage that could be tracked by a loss in residual strength.  相似文献   

13.
钴作为硬质合金应用最广泛的黏结剂,存在资源稀缺、成本高昂以及WC-Co硬质合金耐腐蚀性能较差等问题,综合考量生产成本与改善性能,本研究采用铁镍部分代替钴组成复合黏结剂,以其制备超细硬质合金,研究其显微组织和力学、耐蚀耐磨性能的关系。结果表明,黏结相中Fe/Ni质量分数比增加,使得合金WC晶粒细化和黏结相分布不均,合金的硬度和抗弯强度分别提高与降低。合金在中性NaCl溶液中的耐腐蚀性能评估采用极化曲线测试与浸泡实验,黏结相添加Ni能提高合金耐蚀性,归因于Ni的钝化特性与促进腐蚀产物膜的形成。硬质合金摩擦系数和磨损率与Fe/Ni质量比呈负相关,合金耐磨性的提高主要归因于黏结相的强度增强和WC晶粒细化合金硬度提高。   相似文献   

14.
Uncoated and copper coated steel wire mesh reinforcing LM6 aluminium alloy composites have been produced using squeeze casting process by varying reinforcement orientation viz., 0°, 45° and 90° respectively. Microstructure of the castings has been examined and mechanical properties such as hardness, tensile strength and ductility have been investigated. Fracture surface of tensile specimens has been analysed using field emission scanning electron microscope. Microstructure of samples reveals that copper coating on steel wires improves the interface bonding between matrix and reinforcement. Average hardness values of 259 and 90 Hv have been observed in steel wire and matrix respectively. Tensile strength of composites increases with increasing angle of reinforcement orientation from 0° to 90°. Tensile strength increases up to 11% by reinforcing copper coated steel wire mesh at 90° orientation as compared to LM6 aluminium alloy. Fracture surface of composites shows pullout of steel wires in uncoated steel wire mesh composites and broken wires in copper coated steel wire mesh composites respectively. Dimples have been observed on the fracture surface of LM6 aluminium alloy. In general, copper coated steel wire mesh composites offer better hardness and tensile strength compared to uncoated steel wire mesh composites and LM6 aluminium alloy. This may be attributed to the copper coating on steel wires which results better interface bonding between matrix and reinforcement.  相似文献   

15.
In this study, a nano-composite composed of gelatin as the matrix and Si-Mg-FA nano-particles as an additive was deposited on the AZ31 Mg alloy via dip coating method. In addition, a coating composed of MgO, MgSiO3 and Mg2SiO4 phases was applied on the AZ31 Mg alloy by anodizing process. It was found that the Nano-composite coating with a uniform distribution of nano-particles within the gelatin matrix with the thickness of about 9 µm was dense, crack-free and uniform whereas the surface of anodized layer was relatively coarse due to the presence of flaws and micro-cracks. The surface morphology, EDS analysis and FTIR results revealed the ability of nano-composite coated specimen to form the bone-like apatite. Due to the presence of aforementioned phases and special surface features, the anodized specimen possessed higher and lower corrosion resistance than uncoated and nano-composite coated specimens, respectively. The passive coating resistances (RCT) of nano-composite, anodized specimen and uncoated samples were 2164, 1449 and 1024 Ω cm2, respectively.  相似文献   

16.
为提升FeSiAl(FSA)合金的盐雾耐腐蚀性能,将对氨基苯甲酸(para-aminobenzoic acid,PABA)和氧化石墨烯(graphene oxide,GO)依次接枝和包覆到FeSiAl合金粉末表面,制备了FSA/PABA/GO复合材料,探究了氧化石墨烯对FeSiAl合金粉末耐蚀性和电磁性能的影响。研究表明,氧化石墨烯均匀包覆于FeSiAl合金粉末表面,且与合金粉末紧密结合;氧化石墨烯使FeSiAl合金的盐雾腐蚀电位从?0.15正移至0.08 V,腐蚀速率从1.21×10?11 m·s?1降低至4.75×10?13 m·s?1,显著增强了FeSiAl合金盐雾抗腐蚀性能。由于氧化石墨烯相对于FeSiAl合金具有较高的电导率,显著增加了FeSiAl合金的介电常数。FSA/PABA/GO复合材料在0.5~10.0 GHz具有较低的磁导率,较高的电导率和较低的磁导率导致复合材料表现出较差的微波吸收性能。  相似文献   

17.
For clinical implantation purposes of shape memory metals the nearly equiatomic nickel-titanium (NiTi) alloy is generally used. In this study, the corrosion properties and surface characteristics of this alloy were investigated and compared with two reference controls, AISI 316 LVM stainless steel and Ti6A14V. The anodic polarization curves, performed in Hanks' solution at 37 degrees C, demonstrated a passive behaviour for the NiTi alloy. A more pronounced difference between the corrosion and breakdown potential, i.e. a better resistance to chemical breakdown of passivity was found for the NiTi alloy compared to AISI 316 LVM. X-ray electron spectroscopy (XPS) and scanning electron microscopy (SEM) were undertaken to study the elemental composition and structure of the surface films prior to, and after immersion in Hanks' solution. The passive film on the NiTi alloy consists of a mainly TiO2-based oxide with minimal amounts of nickel in the outermost surface layers. After immersion in Hanks' solution the growth of a calcium-phosphate layer was observed. The passive diffusion of nickel from the NiTi alloy, measured by atomic absorption spectrophotometry reduced significantly in time from an initial release rate of 14.5 x 10(-7) microg cm(-2) s(-1) to a nickel release that could not detect anymore after 10 days. It is suggested that the good corrosion properties of the NiTi alloy and the related promising biological response, as reported in literature, may be ascribed to the presence of mainly a TiO2-based surface layer and its specific properties, including the formation of a calcium-phosphate layer after exposure to a bioenvironment.  相似文献   

18.
The corrosion resistance of laboratory press‐hardened components in aluminized, galvanized or galvannealed boron steels was evaluated through VDA 621‐415 cyclic test for the automotive industry. 22MnB5 uncoated steel for hot stamping and standard galvanized steel for cold forming were also included as references. Corrosion resistance after painting (cosmetic corrosion) was quantified by measuring the delamination of electro‐deposited paint from scribed panels. The rusting on their edges was used for determining the cut‐edge corrosion resistance. The corrosion resistance on unpainted deformed panels (perforating corrosion) was quantified by mass losses and pit depth measurements. Zinc‐coated boron steels were found to be more resistant to cosmetic corrosion than the other materials, and slightly more resistant to cut‐edge corrosion than the aluminized one. Red rust apparition could not be avoided due to the high iron content in all these hot‐stamped coatings. The three coated boron steels showed similar performances in terms of resistance to perforation. Aluminized boron steel presents the advantage of being less sensitive to hot‐stamping process deviation. Its robustness has been proved for many years on cars.  相似文献   

19.

Activation pretreatment with nickel acetate solution at various concentrations was performed prior to the phosphating step to enhance the corrosion resistance of carbon steel substrates. The activation solution was studied over various concentrations: 10, 50, and 100 g/L. The effects of these concentrations on surface characteristics and microstructural evolution of the coated samples were characterized by scanning electron microscopy and energy-dispersive spectroscopy. The electrochemical behavior was evaluated using potentiodynamic polarization curves, electrochemical impedance spectroscopy, and immersion test in a 3.5 pct NaCl solution. Significant increases in the nucleation sites and surface coverage of zinc phosphate coating were observed as the concentration of activation solution reached 50 g/L. The electrochemical analysis revealed that the activation treatment with 50 g/L nickel acetate solution significantly improved the protection ability of the zinc phosphate coating. The corrosion current density of activated phosphate coating with 50 g/L was reduced by 64.64 and 13.22 pct, compared to the coatings obtained with activation solutions of 10 and 100 g/L, respectively.

  相似文献   

20.
 Zinc coated dual phase 600 steel (DP 600 grade) was investigated, utilisation of which has gradually increased with each passing day in the automotive industry. The adhesive bonding (AB), resistance spot welding (RSW), and adhesive weld bonding (AWB) joints of the zinc coated DP 600 steel were investigated. Additionally, the zinc coating was removed using HCL acid in order to investigate the effect of the coating. The microstructure, tensile shear strengths, and fracture properties of adhesive bonding (AB), resistance spot welding (RSW), and adhesive weld bonding (AWB) joints of the coated and uncoated DP 600 steel were compared. In addition, a mechanical-electrical-thermal coupled model in a finite element analysis environment was utilised. The thermal profile phenomenon was calculated by simulating this process. The results of the tensile shear test indicated that the tensile load bearing capacity (TLBC) values of the coated specimens among the three welding methods were higher than those of the uncoated specimens. Additionally, the tensile strength of the AWB joints of the coated and uncoated specimens was higher than that of the AB and RSW joints. It was determined that the fracture behaviours and the deformation caused were different for the three welding methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号