首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
2.
3.
4.
BACKGROUND: Abnormal proliferation of vascular smooth muscle cells (VSMC) is a key event in the pathogenesis of atherosclerosis and many vascular diseases. It is known that nitric oxide released from the endothelium participates in the regulation of VSMC proliferation via a cyclic 3',5'-guanosine monophosphate (cGMP)-mediated mechanism. In a series of experiments, sodium nitroprusside (SNP) and A02131-1 were evaluated for their antiproliferative effect and the mechanism of their cGMP-elevating action. METHODS AND RESULTS: The effect of SNP and A02131-1 on epidermal growth factor (EGF)-stimulated proliferation of rat aortic smooth muscle cells (VSMC) was examined. Cell proliferation was measured in terms of [3H]thymidine incorporation, flow cytometry, and the cell number. Further, their effect on the EGF-activated signal transduction pathway was assessed by measuring mitogen-activated protein kinases (MAPK), MAPK kinase (MEK). Raf-1 activity, and the formation of active form of Ras. SNP and A02131-1 inhibited EGF-induced DNA synthesis and subsequent proliferation of VSMC. These two increased cGMP but only a little cAMP in VSMC. A similar antiproliferative effect was observed with 8-bromo-cGMP. The antiproliferative effect of the two was reversed by KT5823 but not by dideoxyadenosine nor Rp-cAMPS. SNP and A02131-1 blocked the EGF-inducible cell cycle progression at the G1/S phase. Further experiments indicated that the two cGMP-elevating agents primarily blocked the activation of Raf-1 by EGF-activated Ras. CONCLUSIONS: These results demonstrate that cGMP-elevating agents inhibit [3H]thymidine incorporation and thus the growth of VSMC, and this inhibition appears to attenuate EGF-activated signal transduction pathway by preventing Ras-dependent activation of Raf-1.  相似文献   

5.
Nitric oxide (NO) and cyclic guanosine 3',5'-monophosphate (cGMP) have been reported to prevent vascular smooth muscle cell (VSMC) proliferation and have beneficial effects to reduce intimal thickening in response to arterial injury. The purpose of this study was to determine whether the downstream effector molecule of NO-cGMP signaling, cyclic GMP-dependent protein kinase (PKG), regulates phenotypic modulation and proliferation in cultured rat aortic VSMC. PKG-expressing VSMC lines were created by transfection of PKG-deficient cell lines and characterized. All forms of PKG, i.e. PKG-I alpha and PKG-I beta, as well as the constitutively active catalytic domain of PKG-I, transformed dedifferentiated 'synthetic' VSMC to a more contractile-like morphology. PKG expression resulted in an increased production of the contractile phenotype marker proteins, smooth muscle myosin heavy chain-2, calponin and alpha-actin and restored the capacity of cAMP and cGMP analogues to inhibit platelet-derived growth factor (PDGF)-induced cell migration. On the other hand, PKG expression had no significant effects on PDGF-induced cell proliferation. These results suggest that PKG expression contributes to the regulation of a contractile-like phenotypic expression in cultured VSMC, and the suppression of PKG expression during cultured growth in vitro may permit the modulation of cells to a more synthetic, dedifferentiated phenotype.  相似文献   

6.
Proliferation of smooth muscle cells and deposition of extracellular matrix proteins are important events in the formation of atherosclerotic plaques. We have investigated the direct and matrix-mediated effects of ascorbate on the proliferation rate of vascular smooth muscle cells (VSMC) isolated from the guinea-pig aorta. In the presence of ascorbate, cells showed a bi-phasic growth pattern. At 125 microM ascorbate, -3H--thymidine incorporation was stimulated 25%. However, higher concentrations of ascorbate gradually decreased cell-incorporated radioactivity up to 50% at 2 mM ascorbate. These effects of ascorbate on DNA synthesis in VSMC were paralleled by the changes in cell number and were not due to ascorbate cytotoxicity. Alpha-tocopherol (0.1 mM), individually and in combinations with 1 mm ascorbate, also inhibited DNA synthesis in VSMC. Ascorbate also influenced proliferation of smooth muscle cells through matrix-mediated effect. New VSMC culture plated on extracellular matrices deposited by smooth muscle cells in the presence of 0.1-1 mM ascorbate had up to 50% lower proliferation rate than on matrices from ascorbate-deficient cells, as assessed by [3H]-thymidine incorporation. This effect was independent from alpha-tocopherol and specific inhibitors of collagen synthesis: L-azetidine-2-carboxylic acid and pyridine-2,4-dicarboxylic acid. An ascorbate-dependent matrix effect was specific for smooth muscle cells grown on VSMC and human skin fibroblast-originated matrices, but not for human vascular endothelial cells. The possible involvement of ascorbate in the regulation of smooth muscle cells proliferation by its antioxidant/pro-oxidant effects and regulation of extracellular matrix composition are discussed.  相似文献   

7.
8.
9.
Cyclic GMP-dependent protein kinase (cGMP kinase) is the major receptor protein for cGMP in vascular smooth muscle. Vascular smooth muscle cells (VSMC) isolated from the rat aorta express type I cGMP kinase at high levels, but expression decreases markedly upon passage of the cells. In primary or early passage, the expression of cGMP kinase is lowest when cells are plated at low density as assessed by immunological and Northern analyses. Expression increases at confluence and is maintained in postconfluent cultures. With repeated passaging, however, the levels of cGMP kinase decrease even in confluent and postconfluent cultures so that after several passages enzyme levels are undetectable. The decrease in expression in passaged cells is not due to exposure to serum-derived growth factors, but rather on the repeated exposure of cells to conditions in which cell density is reduced (i.e., subculturing). These results indicate that aortic VSMC grown at low density or those repetitively passaged have reduced expression of cGMP kinase, and thus may not represent appropriate cultures with which to investigate the role of nitric oxide and cGMP in VSMC function.  相似文献   

10.
11.
BACKGROUND: Both ischemic and direct vascular injury (angioplasty) result in the elaboration of proinflammatory substances, including tumor necrosis factor alpha (TNF), which may regulate vascular smooth muscle cell (VSMC) proliferation and promote vessel stenosis. Interleukin-10 (IL-10) is a pleiotropic cytokine with potent antiinflammatory effects in many cells lines. We hypothesized that IL-10 could be used therapeutically to influence vascular remodeling by inhibiting TNF-induced VSMC proliferation. The purposes of this study were (1) to determine whether human myocardium produces endogenous TNF in response to ischemia-reperfusion, (2) to examine the effect of TNF on human arterial smooth muscle proliferation, and (3) to explore the potential therapeutic effect of IL-10 on unstimulated and TNF-stimulated VSMC proliferation. MATERIALS AND METHODS: Right atrial muscle was obtained from patients undergoing elective cardiac surgery. Atrial muscle was subjected to simulated ischemia and reperfusion in vitro and TNF was measured by immunoassay. Human aortic VSMCs were isolated and cultured. Proliferation assays were performed to determine the effect of TNF and IL-10 on VSMC growth. RESULTS: Ischemia-reperfusion resulted in an increase in atrial myocellular TNF (94.5 +/- 15.8 pg/g wet tissue versus control 12.9 +/- 4.4 pg/g wet tissue, P < 0.002). Compared with control, TNF stimulated concentration-dependent VSMC proliferation (P < 0.005). IL-10 alone did not influence VSMC growth. However, following TNF stimulation, IL-10 inhibited VSMC growth at a dose as low as 0.1 pg/ml (P < 0.005). CONCLUSIONS: Ischemia-reperfusion insult results in increased endogenous myocardial TNF accumulation. TNF stimulates VSMC growth which is abrogated by physiologically relevant levels of IL-10. This antiinflammatory cytokine may prove to be an effective therapeutic agent in regulating vessel wall remodeling following both ischemic and direct cardiovascular injury.  相似文献   

12.
13.
14.
15.
BACKGROUND: Catecholamines have been shown to aggravate atherosclerosis in animals and humans, and abnormal proliferation of vascular smooth muscle cells (VSMC) is a key event in the early stage of atherosclerosis. Catecholamines may be involved in such cell growth. Therefore, a series of experiments using cultured VSMC was performed to elucidate their possible mitogenic effect. METHODS AND RESULTS: We examined the mitogenic effect of catecholamines using rat aortic smooth muscle cells (VSMC) by measuring [3H]thymidine incorporation, checking with flow cytometry, and counting the cell number directly. Furthermore, the catecholamine-activated signal transduction pathway was assessed by measurement of the formation of inositol 1, 4, 5-triphosphate, intracellular Ca2+ concentration, mitogen-activated protein kinase (MAPK) activity, and mitogenic gene expression. Norepinephrine (NE) and phenylephrine stimulated [3H]thymidine incorporation and cell growth. Clonidine and isoproterenol showed little of such effects. Prazosin was more effective than either yohimbine or propranolol in suppressing the mitogenic effect of NE, indicating that catecholamine-induced VSMC proliferation is mediated by alpha 1-adrenoceptors. The alpha 1-adrenoceptor activation was coupled to pertussis toxin-insensitive Gq-protein and triggered phosphoinositide hydrolysis with subsequent activation of protein kinase C and MAPK in VSMC. In response to NE, both 42- and 44-kD MAPK were activated and tyrosine was phosphorylated. alpha 1-Adrenoceptor stimulation with NE also caused accumulation of c-fos, c-jun, and c-myc mRNA. Chloroethylclonidine completely blocked the alpha 1-adrenoceptor-mediated mitogenesis. CONCLUSIONS: The effect of catecholamines appears to be mediated via the activation of the chloroethylclonidine-sensitive alpha 1-adrenoceptors that triggers the phosphoinositide hydrolysis and activates the MAPK pathway, leading to DNA synthesis and cell proliferation.  相似文献   

16.
Angiotensin II type 2 (AT2) receptor is expressed abundantly in the fetal vasculature with rapid decline after birth and re-expressed in the adult vasculature after injury, whereas angiotensin II type 1 (AT1) receptor is expressed. We studied their effects on apoptosis in cultured rat vascular smooth muscle cells (VSMC). Serum starvation induced VSMC DNA fragmentation and the stimulation of AT1 receptor inhibited this apoptotic change. We transfected rat AT2 receptor cDNA, since cultured adult VSMCs show very low level of endogenous AT2 receptor. In AT2 receptor transfected VSMC, selective stimulation of AT2 receptor facilitated serum-deprivation-induced apoptosis and AT1 receptor stimulation inhibited it. Moreover we observed that AT1 receptor stimulation activated extracellular signal-regulated kinase (ERK), whereas the AT2 receptor stimulation inhibited the activation of ERK. Taken together, our results suggest that AT1 and AT2 receptors exert counteracting effects on ERK activation and consequently VSMC apoptosis and differential expression of these receptors may participate in vascular development and vascular remodeling.  相似文献   

17.
OBJECTIVE: While natriuretic peptides can inhibit growth of vascular muscle cells (VSMC), controversy exists as to whether this effect is mediated via the guanylate cyclase-coupled receptors, NPR-A and NPR-B, or the clearance receptor, NPR-C. The original aim of this study was to examine the mechanism by which the NPR-C receptor regulates growth. METHODS: Rat VSMC were characterized with regard to natriuretic peptide receptor expression by RT/PCR and radioligand binding studies. The effect on growth following addition of the peptides and the ligands for NPR-C was measured by [3H]thymidine incorporation. Cyclic guanosine monophosphate (cGMP) levels were determined by radioimmunoassay and mitogen activating protein kinase activity was based on the phosphorylation of myelin basic protein. RESULTS: In rat VSMC, passages 4-12, both atrial natriuretic peptide (ANP) and C-type natriuretic peptide (CNP) dose-dependently inhibited serum and PDGF-induced VSMC growth. In contrast, NPR-C specific ligands alone had no effect on cell growth but enhanced growth inhibition when co-administered with ANP and CNP. ANP and CNP also decreased PDGF-BB-stimulated MAP kinase activity. Once again, NPR-C specific ligands alone had no effect but enhanced the effects of ANP. Furthermore, a cGMP specific phosphodiesterase inhibitor dose-dependently inhibited VSMC growth and markedly enhanced natriuretic-peptide-induced inhibition at low peptide concentrations. To examine a potential mechanism for the controversy concerning the NPR-C, we investigated the autocrine expression of ANP and CNP by VSMC and found that mRNA encoding both peptides could be detected by RT/PCR. CONCLUSION: Our findings indicate that the guanyl-cyclase-linked receptors mediate the antiproliferative actions of the natriuretic peptides on vascular smooth muscle cell growth. Moreover, we hypothesize that the apparent inhibition of growth by NPR-C specific ligands reported by others may be due to stabilization of natriuretic peptides produced by the cultured VSMC and subsequent action of these peptides at guanyl-cyclase-linked receptors.  相似文献   

18.
An analysis of endothelin in atherosclerotic plaques using immunohistochemical methods showed that endothelin not only existed in endothelial cells, large amounts were also found in the proliferating intimal vascular smooth muscle cells (VSMC). In the de-endothelized thoracic aorta of rats, significant amounts of endothelin could be produced by proliferating intimal VSMC. Radio-immunological studies demonstrated that the extent of VSMC proliferation was in direct ratio to endothelin content, which suggests that production of endothelin is related to proliferation of VSMC in atherosclerotic plaques.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号