首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Qin H  Zhao L  Li R  Wu R  Zou H 《Analytical chemistry》2011,83(20):7721-7728
Many diseases are characterized by the changes of either glycan structure or glycosylation site of glycoproteins. The glycan profiling can provide the overview of glycosylation in despite of the absence of the glycosylation sites, which in turn simplifies the complexity of disease diagnosis. Herein, we describe a simple method to profile the N-linked glycans by MALDI-TOF MS with the enrichment using oxidized ordered mesoporous carbon, taking advantages of the size-exclusive effect of mesopore against proteins as well as the interaction between glycans and carbon. Twenty four N-linked glycans derived from ovalbumin could be efficiently detected with high signal-to-noise (S/N) ratios and sufficient peak intensities. In the analysis of complex serum samples, 32 N-linked glycans could be profiled, and 5 (4 core-fucosylated glycans) of them were distinguished from liver cancer and healthy samples.  相似文献   

2.
Multidimensional protein chromatography offers an alternative to gel-based separations for large-scale proteomic analyses of highly complex mixtures. However, these liquid separations divide the original mixtures into multitudes of discrete samples, each of which may require numerous steps of sample manipulation, such as fraction collection, buffer exchange, protease digestion, peptide desalting, and, in the case of MALDI-MS, matrix and analyte cocrystallization on target. When traditional high-flow liquid chromatography is used, large volumes of solvent must also be removed from fractions to maximize MS sensitivity. Although robotic liquid-handling devices can facilitate these steps and reduce analyst/sample contact, they remain prototypic and expensive. Here, we explore the use of a novel, one-piece elastomeric device, the BD MALDI sample concentrator, which affixes to a MALDI target to create a prestructured 96-well sample array on the target surface. We have developed methodologies to process high-flow HPLC fractions by collecting them directly into the elastomeric device and then subjecting them to sequential on-target sample concentration, buffer exchange, digestion, desalting, and matrix/analyte cocrystallization for MALDI-MS analyses. We demonstrate that this methodology enables the rapid digestion and analysis of low amounts of proteins and that it is effective in the characterization of an HPLC-fractionated protein mixture by MALDI-TOF MS followed by peptide mass fingerprinting.  相似文献   

3.
Qiu R  Regnier FE 《Analytical chemistry》2005,77(22):7225-7231
This study describes a simple and efficient approach for comparative analysis of sialylated glycoforms of proteins containing differentially branched complex-type glycans. The analytical protocol is based on glycopeptide selection from tryptic digests with serial lectin affinity chromatography (SLAC), quantification with global internal standard technology, fractionation of deglycosylated peptides with reversed-phase chromatography, and peptide sequencing with tandem mass spectrometry. Fractionation of complex tri- and tetraantennary N-linked glycoforms from biantennary N-linked glycoforms bearing terminal sialic acid residues was achieved using a set of serial lectin columns with immobilized Sambucus nigra agglutinin and concanavalin A. These two fractions from the affinity selection were differentially labeled, mixed, and then deglycosylated with the enzyme PNGase F. The deglycosylated sample was further fractionated by reversed-phase chromatography and analyzed by electrospray ionization mass spectrometry. The SLAC strategy was applied to tryptic digests of human serum, and it was found that most sialylated glycopeptides identified carry more biantennary glycans than tri- and tetraantennary glycans, and the relative amount of biantennary glycan versus tri- and tetraantennary glycans was different at separate glycosylation sites within the same glycoprotein.  相似文献   

4.
Glycosylation affects various biological functions of proteins (e.g., protein binding, inter- or intracell signaling, etc.), and it can serve as an indicator of disease. Therefore, characterization of the glycosylation in proteins is one important step in developing a comprehensive understanding of the biological significance of glycosylation and in facilitating disease diagnosis. Glycopeptide-based MS analysis has proven to be a viable tool for glycopeptide analysis. However, when glycopeptides coexist with peptides, glycopeptide signals are usually suppressed by the strongly ionizing peptides. Toward this end, it would be desirable to seek methods to improve glycopeptide detection. Herein, we performed an in-depth study of maximizing glycosylation coverage on model glycoproteins by optimizing all the aspects of glycopeptide-based analysis, including sample preparation methods, mass spectral techniques, and data analysis strategies. For sample preparation, several approaches, including reversed-phase high-performance liquid chromatography, lectin-based affinity, and hydrophilic affinity using a carbohydrate-based resin, were compared and tested individually as well as in parallel. For mass spectral techniques, profiling glycopeptides in both positive and negative ion mode is essential to obtain complete glycan profiles. For data analysis, incorporating variable modifications in the database search of GlycoPep DB enhances glycopeptide coverage. In addition, the use of PNGase F helps to confirm the presence of weakly ionized glycopeptides when they coelute with strongly ionizing species. In doing so, we created a work flow that is designed specifically to optimize the coverage of glycosylation heterogeneity in terms of the number of glycosylation sites detected and their corresponding glycan profiles. To test the effectiveness of this approach, a glycoprotein with 27 potential glycosylation sites, and an unknown glycosylation profile, was analyzed; on this protein, more than 300 glycoforms from 23 detected glycosylation sites were identified. This work demonstrates that these strategies significantly improve the glycopeptide detection, thereby, facilitating understanding the functional properties of glycans on the glycoproteins.  相似文献   

5.
Accurate and reproducible quantification of glycans from protein drugs has become an important issue for quality control of therapeutic proteins in biopharmaceutical and biotechnology industries. Mass spectrometry is a promising tool for both qualitative and quantitative analysis of glycans owing to mass accuracy, efficiency, and reproducibility, but it has been of limited success in quantitative analysis for sialylated glycans in a high-throughput manner. Here, we present a solid-phase permethylation-based total N-glycan quantitative method that includes N-glycan releasing, purification, and derivatization on a 96-well plate platform. The solid-phase neutralization enabled us to perform reliable absolute quantification of the acidic N-glycans as well as neutral N-glycans from model glycoproteins (i.e., chicken ovalbumin and porcine thyroglobulin) by only using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). Furthermore, low-abundance sialylated N-glycans from human serum prostate specific antigen (PSA), an extremely valuable prostate cancer marker, were initially quantified, and their chemical compositions were proposed. Taken together, these results demonstrate that our all-inclusive glycan preparation method based on a 96-well plate platform may contribute to the precise and reliable qualitative and quantitative analysis of glycans.  相似文献   

6.
Glycosylation is a diverse but critically important post-translational modification that modulates the physical, chemical and biological properties of proteins. Alterations in glycosylation have been noted in a number of diseases including cancer. The discovery of alterations in the glycosylation of serum glycoproteins which may offer potential as biomarkers is attracting considerable research interest. In the current study, the significant improvements in efficiency, selectivity, and analysis speed offered by ultra performance liquid chromatography (UPLC) profiling of fluorescently labeled N-linked oligosaccharides on a recently introduced sub-2 μm hydrophilic interaction (HILIC) based stationary phase are demonstrated to identify cancer associated alterations in the serum N-glycome of patients bearing stomach adenocarcinoma. The contribution of the glycosylation present on four highly abundant serum proteins namely, IgG, haptoglobin, transferrin, and α1-acid glycoprotein was evaluated. Alterations in the glycosylation present on these four proteins isolated from the pathologically staged cancer serum using either affinity purification or two-dimensional electrophoresis were then investigated as possible markers for stomach cancer progression. In agreement with previous reports, an increase in sialylation was observed on haptoglobin, transferrin, and α1-acid glycoprotein in the cancerous state. Increased levels of core fucosylated biantennary glycans and decreased levels of monogalactosylated core fucosylated biantennary glycans were present on IgG with increasing disease progression. The speed and selectivity offered by the sub-2 μm HILIC phase make it ideal for rapid yet highly efficient separation of complex oligosaccharide mixtures such as that present in the serum N-glycome.  相似文献   

7.
Glycopeptides prepared from 1 nmol of a mixture of glycoproteins, transferrin, and ribonuclease B by lysylendopeptidase digestion were isolated by lectin and cellulose column chromatographies, and then they were analyzed by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry and MALDI-quadrupole ion trap (QIT)-TOF mass spectrometry which enables the performance of MS ( n ) analysis. The lectin affinity preparation of glycopeptides with Sambucus nigra agglutinin and concanavalin A provides the glycan structure outlines for the sialyl linkage and the core structure of N-glycans. Such structural estimation was confirmed by MALDI-TOF MS and MALDI-QIT-TOF MS/MS. Amino acid sequences and location of glycosylation sites were determined by MALDI-QIT-TOF MS/MS/MS. Taken together, the combination of lectin column chromatography, MALDI-TOF MS, and MALDI-QIT-TOF MS ( n ) provides an easy way for the structural estimation of glycans and the rapid analysis of glycoproteomics.  相似文献   

8.
An approach for the characterization of glycosylation sites and oligosaccharide heterogeneity in glycoproteins based on a combination of nonspecific proteolysis, deglycosylation, and matrix-assisted laser desorption/ionization Fourier transform mass spectrometry (MALDI-FT MS) is described. Glycoproteins were digested with Pronase yielding primarily glycopeptides and amino acids. Nonglycosylated peptide fragments were susceptible to complete Pronase digestion to their constituent amino acids. Steric hindrance prohibited the digestion of the peptide moiety attached to the glycan. Glycopeptides were desalted and concentrated using solid-phase extraction and analyzed by MALDI MS. The oligosaccharides were also analyzed by MALDI MS after releasing the glycans from glycoproteins using PNGase F. The peptide moiety of the glycopeptides was identified by subtracting the masses of the glycans derived from PNGase F treatment from the masses of the glycopeptides. The experimental strategy was validated using glycoproteins with known oligosaccharide structures, ribonuclease B and chicken ovalbumin. This procedure was then used to determine the N-glycosylation sites and site heterogeneity of a glycoprotein whose glycosylation pattern was unknown, namely, the Xenopus laevis egg cortical granule lectin. This procedure is useful for determining protein site heterogeneity and structural heterogeneities of the oligosaccharide moiety of glycoproteins.  相似文献   

9.
Using recombinant DNA technology for expression of protein therapeutics is a maturing field of pharmaceutical research and development. As recombinant proteins are increasingly utilized as biotherapeutics, improved methodologies ensuring the characterization of post-translational modifications (PTMs) are needed. Typically, proteins prepared for PTM analysis are proteolytically digested and analyzed by mass spectrometry. To ensure full coverage of the PTMs on a given protein, one must obtain complete sequence coverage of the protein, which is often quite challenging. The objective of the research described here is to design a protocol that maximizes protein sequence coverage and enables detection of post-translational modifications, specifically N-linked glycosylation. To achieve this objective, a highly efficient proteolytic digest protocol using trypsin was designed by comparing the relative merits of denaturing agents (urea and Rapigest SF), reducing agents [dithiothreitol (DTT) and tris(2-carboxyethyl)phophine (TCEP)], and various concentrations of alkylating agent [iodoacetamide (IAM)]. After analysis of human apo-transferrin using various protease digestion protocols, ideal conditions were determined to contain 6 M urea for denaturation, 5 mM TCEP for reduction, 10 mM IAM for alkylation, and 10 mM DTT, to quench excess IAM before the addition of trypsin. This method was successfully applied to a novel recombinant protein, human lysyl oxidase-like 2. Furthermore, the glycosylation PTMs were readily detected at two glycosylation sites in the protein. These digestion conditions were specifically designed for PTM analysis of recombinant proteins and biotherapeutics, and the work described herein fills an unmet need in the growing field of biopharmaceutical analysis.  相似文献   

10.
Protein identification through peptide mass mapping by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) has become a standard technique, used in many laboratories around the world. The traditional methodology often includes long incubations (6-24 h) and extensive manual steps. In an effort to address this, an integrated microanalytical platform has been developed for automated identification of proteins. The silicon micromachined analytical tools, i.e., the microchip immobilized enzyme reactor (mu-chip IMER), the piezoelectric microdispenser, and the high-density nanovial target plates, are the cornerstones in the system. The mu-chip IMER provides on-line enzymatic digestion of protein samples (1 microL) within 1-3 min, and the microdispenser enables subsequent on-line picoliter sample preparation in a high-density format. Interfaced to automated MALDI-TOF MS, these tools compose a highly efficient platform that can analyze 100 protein samples in 3.5 h. Kinetic studies on the microreactors are reported as well as the operation of this microanalytical platform for protein identification, wherein lysozyme, myoglobin, ribonuclease A, and cytochrome c have been identified with a high sequence coverage (50-100%).  相似文献   

11.
Qin W  Song Z  Fan C  Zhang W  Cai Y  Zhang Y  Qian X 《Analytical chemistry》2012,84(7):3138-3144
In recent years, quantitative proteomic research attracts great attention because of the urgent needs in biological and clinical research, such as biomarker discovery and verification. Currently, mass spectrometry (MS) based bottom up strategy has become the method of choice for proteomic quantification. In this strategy, the amount of proteins is determined by quantifying the corresponding proteolytic peptides of the proteins, therefore highly efficient and complete protein digestion is crucial for achieving accurate quantification results. However, the digestion efficiency and completeness obtained using conventional free protease digestion is not satisfactory for highly complex proteomic samples. In this work, we developed a new type of immobilized trypsin using hairy noncross-linked polymer chains hybrid magnetic nanoparticle as the matrix aiming at ultra fast, highly efficient proteomic digestion and facile (18)O labeling for absolution protein quantification. The hybrid nanoparticle is synthesized by in situ growth of hairy polymer chains from the magnetic nanoparticle surface using surface initiated atom transfer radical polymerization technique. The flexible noncross-linked polymer chains not only provide large amount of binding sites but also work as scaffolds to support three-dimensional trypsin immobilization which leads to increased loading amount and improved accessibility of the immobilized trypsin. For complex proteomic samples, obviously increased digestion efficiency and completeness was demonstrated by 27.2% and 40.8% increase in the number of identified proteins and peptides as well as remarkably reduced undigested proteins residues compared with that obtained using conventional free trypsin digestion. The successful application in absolute protein quantification of enolase from Thermoanaerobacter tengcongensis protein extracts using (18)O labeling and MRM strategy further demonstrated the potential of this hybrid nanoparticle immobilized trypsin for high throughput proteome quantification.  相似文献   

12.
N-Linked protein glycosylation is one of the most prevalent post-translational modifications and is involved in essential cellular functions such as cell-cell interactions and cellular recognition as well as in chronic diseases. In this study, we explored stable isotope labeled carbonyl-reactive tandem mass tags (glyco-TMTs) as a novel approach for the quantification of N-linked glycans. Glyco-TMTs bearing hydrazide- and aminooxy-functionalized groups were compared for glycan reducing end derivatization efficiency and quantification merits. Aminooxy TMTs outperform the hydrazide reagents in terms of labeling efficiency (>95% vs 65% at 0.1 μM) and mass spectrometry based quantification using heavy/light-TMT labeled glycans enabled accurate quantification in MS1 spectra (CV < 15%) over a broad dynamic range (up to 1:40). In contrast, isobaric TMT labeling with quantification of reporter ions in tandem mass spectra suffered from severe ratio compression already at low sample ratios. To demonstrate the practical utility of the developed approach, we characterized the global N-linked glycosylation profiles of the isogenic human colon carcinoma cell lines SW480 (primary tumor) and SW620 (metastatic tumor). The data revealed significant down-regulation of high-mannose glycans in the metastatic cell line.  相似文献   

13.
Matrix-assisted laser desorption/ionization (tandem) mass spectrometry (MALDI MS) is widely used in protein chemistry and proteomics research for the identification and characterization of proteins isolated by polyacrylamide gel electrophoresis. In an effort to minimize sample handling and increase sample throughput, we have developed a novel in-gel digestion protocol where sample preparation is performed directly on a MALDI probe with prestructured sample support. The protocol consists of few sample-handling steps and has minimal consumption of reagents, making the protocol sensitive, timesaving, and cost-efficient. Performance of the on-probe sample preparation protocol was demonstrated by analysis of a set of rat liver proteins obtained from a fluorescently stained (Cy3 and SyproRuby) two-dimensional polyacrylamide gel. The success rate of protein identification by on-probe tryptic digestion and MALDI peptide mass mapping was 89%. The on-probe in-gel digestion procedure provided superior sensitivity and peptide mass mapping performance as compared to our standard in-gel digestion protocol. The on-probe digestion technique resulted in significantly improved amino acid sequence coverage of proteins, mainly due to efficient recovery and detection of large (>1.5 kDa) hydrophobic peptides. These observations indicate that numerous tryptic peptides are lost when using the standard in-gel digestion methods and sample preparation techniques for MALDI MS. This study also demonstrates that the on-probe digestion protocol combined with MALDI tandem mass spectrometry provides a robust platform for proteomics research, including protein identification and determination of posttranslational modifications.  相似文献   

14.
Yang SJ  Zhang H 《Analytical chemistry》2012,84(5):2232-2238
Investigation into glycoproteins and their associated glycans is the key to understanding the function of glycoproteins in biological pathways and disease development. Current methods for glycan analysis are generally based on multiple preparation processes to separate glycans from proteins and other molecules prior to analysis. During the multistep purification processes, glycans are continuously lost and the procedure increases the difficulty for accurate quantitative analysis of glycans. Here we describe the development of a novel technique, which uses hydrazide beads to capture glycans. It is based on the conjugation of glycans to hydrazide beads through the formation of reversible hydrazone, washing out unbound nonglycans, then releasing captured glycans by acids. The results showed that the glycans were able to be isolated from concatenate peptides by using hydrazide beads. This technique was also applied to the analysis of glycans from sera sample. The integrated capture-release on the solid-phase simplifies the procedure for glycan preparation from a complex mixture and can be a powerful tool for glycan analysis.  相似文献   

15.
Here we present an integrated microfluidic device for rapid and automated isolation and quantification of glycoprotein biomarkers directly from biological samples on a multidimensional analysis platform. In the first dimension, digital isoelectric fractionation (dIEF) uses discrete pH-specific membranes to separate proteins and their isoforms into precise bins in a highly flexible spatial arrangement on-chip. dIEF provides high sample preconcentration factors followed by immediate high-fidelity transfer of fractions for downstream analysis. We successfully fractionate isoforms of two potential glycoprotein cancer markers, fetuin and prostate-specific antigen (PSA), with 10 min run time, and results are compared qualitatively and quantitatively to conventional slab gel IEF. In the second dimension, functionalized monolithic columns are used to capture and detect targeted analytes from each fraction. We demonstrate rapid two-dimensional fractionation, immunocapture, and detection of C-reactive protein (CRP) spiked in human serum. This rapid, flexible, and automated approach is well-suited for glycoprotein biomarker research and verification studies and represents a practical avenue for glycoprotein isoform-based diagnostic testing.  相似文献   

16.
Among the most important proteins involved in disease and healing processes are the immunoglobulins (Igs). Although many of the Igs have been studied through proteomics, aside from IgG, immunoglobulin carbohydrates have not been extensively characterized in different states of health. It seems valuable to develop techniques that permit an understanding of changes in the structures and abundances of Ig glycans in the context of disease onset and progression. We have devised a strategy for characterization of the glycans for the Ig classes other than IgG (i.e., A, D, E, and M) that contain kappa light chains that requires only a few microliters of biological material. First, we designed a microcolumn containing recombinant Protein L that was immobilized on macroporous silica particles. A similarly designed Protein G microcolumn was utilized to first perform an online depletion of the IgG from the sample, human blood serum, and thereby facilitate enrichment of the other Igs. Even though only 3 μL of serum was used in these analyses, we were able to recover a significantly enriched fraction of non-IgG immunoglobulins. The enrichment properties of the Protein L column were characterized using a highly sensitive label-free quantitative proteomics LC-MS/MS approach, and the glycomic profiles of enriched immunoglobulins were measured by MALDI-TOF MS. As a proof of principle, a comparative study was conducted using blood serum from a small group of lung cancer patients and a group of age-matched cancer-free individuals to demonstrate that the method is suitable for investigation of glycosylation changes in disease. The results were in agreement with a glycomic investigation of whole blood serum from a much larger lung cancer cohort.  相似文献   

17.
Zhu J  Wang F  Chen R  Cheng K  Xu B  Guo Z  Liang X  Ye M  Zou H 《Analytical chemistry》2012,84(11):5146-5153
Sample handling procedures including protein digestion, glycopeptide enrichment, and deglycosylation have significant impact on the performance of glycoproteome analysis. Several glycoproteomic analysis systems were developed to integrate some of these sample preparation procedures. However, no microsystem integrates all of above three procedures together. In this work, we developed a glycoproteomic microreactor enabling seamless integration of all these procedures. In this reactor, trypsin digestion was accelerated by adding acetonitrile to 80%, and after acidification of protein digest by trifluoroacetic acid (TFA), the following hydrophilic interaction chromatography (HILIC) enrichment and deglycosylation were sequentially performed without any desalting, lyophilization, or buffer exchange steps. The total processing time could be as short as 1.5 h. The detection limit of human IgG as low as 30 fmol was also achieved. When applied to human serum glycoproteome analysis, a total number of 92, 178, and 221 unique N-glycosylation sites were identified from three replicate analyses of 10 nL, 100 nL, and 1 μL of human serum, respectively. It was demonstrated that the glycoproteomic microreactor based method had very high sensitivity and was well suited for glycoproteome analysis of minute protein samples.  相似文献   

18.
Analytical advantages of using multiple enzymes for sample digestion (MED), primarily an increase of sequence coverage, have been reported in several studies. However, this approach is only rarely used, mainly because it requires additional sample and mass spectrometric measurement time. We have previously described Filter Aided Sample Preparation (FASP), a type of proteomic reactor, in which samples dissolved in sodium dodecyl sulfate (SDS) are digested in an ultrafiltration unit. In FASP, such as in any other preparation protocol, a portion of sample remains after digestion and peptide elution. Making use of this fact, we here develop a protocol enabling consecutive digestion of the sample with two or three enzymes. By use of the FASP method, peptides are liberated after each digestion step and remaining material is subsequently cleaved with the next proteinase. We observed excellent performance of the ultrafiltration devices in this mode, allowing efficient separation of orthogonal populations of peptides, resulting in an increase in the numbers of identified peptides and proteins. At the low microgram level, we found that the consecutive use of endoproteinases LysC and trypsin enabled identification of up to 40% more proteins and phosphorylation sites in comparison to the commonly used one-step tryptic digestion. MED-FASP offers efficient exploration of previously unused sample material, increasing depth of proteomic analyses and sequence coverage.  相似文献   

19.
A high-throughput (HT) comprehensive analysis approach was developed for assaying proteins directly from human plasma. Proteins were selectively retrieved, by utilizing antibodies immobilized within affinity pipet tips, and eluted onto enzymatically active mass spectrometer targets for subsequent digestion and structural characterization. Several parameters, including uniform parallel protein elution from 96 affinity pipet tips, proper buffering for on-target digestion, termination of the digestion, and MALDI matrix (re)introduction, were evaluated and optimized. The approach was validated via parallel, high-throughput analysis of transthyretin (TTR) and transferrin (TRFE) from 96 identical plasma samples. The 96 parallel analyses for each protein were completed in less than 90 min, measured from protein extraction to insertion in the mass spectrometer. Virtually identical mass spectra were obtained from the 96 TTR analyses, characterized by the presence of 14 tryptic fragments that allowed TTR sequence mapping with 100% coverage. Database search returned TTR as the best match for all 96 data sets. In regard to the TRFE analyses, database searching using data from the 96 spectra returned TRFE as the best match for all but 1 of the spectra. TRFE was mapped with 47-69% sequence coverage, with gaps in the sequence coverage corresponding to the carbohydrate-containing peptide fragments and large and small trypsin fragments that fell outside the window of mass analysis. Overall, the combined high-throughput affinity capture-protein digestion approach showed high reproducibility and speed and yielded an exceptional level of protein characterization, suggesting its use in future population proteomics endeavors.  相似文献   

20.
A new method for the mass spectrometric characterization of site-specific protein glycosylation is presented. Glycoprotein samples were subjected to unspecific proteolysis by Pronase, resulting in glycopeptides with peptide moieties of mostly two to eight amino acids. Resulting (glyco-)peptide samples were resolved by nanoscale normal-phase liquid chromatography (LC)-online mass spectrometry (MS). Retention depended on the size of the glycan chain and allowed the separation of identical peptide moieties containing different N-glycan structures. Glycopeptides were analyzed in an ion trap instrument performing repetitive ion isolation/fragmentation cycles. While the MS/MS spectra were dominated by fragmentations of glycosidic linkages, MS(3) spectra exhibited cleavages of the peptide backbone and provided information on the peptide sequence and glycan attachment site. When applied to the model glycoproteins ribonuclease B and horseradish peroxidase (HRP), the method provided detailed insights into protein glycosylation and revealed some new features of site-specific glycosylation of HRP. Application of the method to Dolichos biflorus lectin, which has hitherto not been studied with respect to its glycosylation, identified two glycans attached alternatively to its single glycosylation site. Thus, the presented, unique combination of Pronase digestion of glycoproteins, normal-phase nano-LC, and multistage MS provides a method for the facile characterization of site-specific protein glycosylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号