首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The heat capacity and enthalpy of Y5Sn3 were investigated in the temperature range 58-2294 K for the first time. Values of the standard enthalpy, entropy, and reduced Gibbs energy of the stannide were calculated from the low-temperature heat capacity data. The temperature dependencies of the thermodynamic functions for the solid state of Y5Sn3 in the range 298.15-2300 K were found. The temperature, enthalpy, and entropy of melting of the compound were determined.  相似文献   

2.
Thermodynamic modeling of the nickel-lead-tin system   总被引:1,自引:0,他引:1  
  相似文献   

3.
The phase equilibrium and thermodynamic information of the Nb-N system was reviewed and assessed by using thermodynamic models for the Gibbs energy of individual phases. Although there was a large amount of experimental information of the system, heat capacity data of the Nb2N and NbN were not available either in low or high temperatures. In the present study, low-temperature heat capacity and theo S 298 values were estimated using estimated entropy Debye temperatures. Only the Nb2N (hcp) and NbN (fcc) nitrides were considered to be the true binary phases and were included in the present evaluation in addition to the N2 gas, liquid, andα-solid solution (bcc). Three thermodynamic models were used: a two-sublattice model for the solid solution phases, a substitutional model for the liquid phase, and an ideal-gas model for the N2 gas. The model parameters were evaluated by fitting to the selected data by means of a computer program. A consistent set of parameters was obtained which satisfactorily described most of the experimental and estimated data.  相似文献   

4.
The isothermal section of the Sn-Cu-Ni system at 800 °C has been experimentally determined. There is no ternary compound. A solid solution with a very wide compositional range, the γ phase is formed between the Ni3Sn(H) phase and Cu4Sn(H) phase; however, both of these two binary phases are not stable at 800 °C. The binary Ni3Sn2 phase also has extensive ternary solubility. The homogeneity ranges of both the γ and Ni3Sn2 phases are very large in parallel to the Cu-Ni side, but relatively narrow along the Sn direction. This phenomenon indicates that Cu and Ni are exchangeable in both phases. Three kinds of reaction couples, Sn-55 at. pct Cu/Ni, Sn-65 at. pct Cu/Ni, and Sn-75 at. pct Cu/Ni, were prepared and reacted at 800 °C for 5 to 20 minutes. The reaction paths are liquid/Ni3Sn2/γ/Ni3Sn(L)/Ni for the Sn-55 at. pct Cu/Ni and Sn-65 at. pct Cu/Ni couples, and the reaction path is liquid/γ/Ni3Sn(L)/Ni for the Sn-75 at. pct Ni couples.  相似文献   

5.
The microstructure evolution and mechanical properties of Mg-15Gd-3Y alloy were investigated in the as-cast and heat treated conditions.The microstructure evolution from as-cast to cast-T4 states involved α-Mg solid solution+Mg5(Gd,Y) phase→α-Mg supersatu-rated solid solution+rare earths compound Mg3(Gd1.26,Y0.74)→α-Mg supersaturated solid solution+rare earths compound Mg3(Gd0.745,Y1.255).It showed that 480 oC/4 h was the optimal solution treatment parameter.If the solution temperature was high or the holding time was long,such as 520 oC/16 h,an overheating phenomenon would be induced,which had a detrimental effect on the mechanical properties.When age-ing at 225 and 200 oC,the alloy would exhibit a significant age-hardening response and great long-time-age-hardening potential,respectively.The best mechanical properties were obtained at the parameters of 480 oC/4 h+225 oC/16 h,with the UTS of 257.0 MPa and elongation of 3.8%.  相似文献   

6.
7.
Martensitic transformations of Fe-Pt alloys near the composition of Fe3Pt with various degrees of order were examined systematically mainly by transmission electron microscopy. This alloy system exhibits two types of martensitic transformations, fcc-bct (bcc) and fcc-fct. The present experimental results indicate that each transformation is independent and compctitive. As the degree of order of austenite (L12 superlattice) increases, the dislocation density of bct (bcc) martensite is remarkably reduced and the shape of internal twins is changed, which is closely related to the thermoelastic behavior and the reversibility of the transformation.  相似文献   

8.
The current investigation reports detailed study on the microstructural evolution in the suction cast hypereutectic Ti71Fe29?x Sn x alloys during Sn addition with x = 0, 2, 2.5, 3, 3.85, 4.5, 6, and 10 at. pct and the solidification of these ternary alloys using SEM and TEM. These alloys have been prepared by melting high-purity elements using vacuum arc melting furnace under high-purity argon atmosphere. This was followed by suction casting these alloys in the water-cooled split Cu molds of diameters, ? = 1 and 3 mm, under argon atmosphere. The results indicate the formation of binary eutectic between bcc solid solution ??-Ti and B2 FeTi in all alloys. ??-Ti undergoes eutectoid transformation, ??-Ti ?? ??-Ti + FeTi, during subsequent solid-state cooling, leading to formation of hcp ??-Ti and FeTi. For alloys x < 2, the primary FeTi forms from the liquid before the formation of eutectic with minute scale Ti3Sn phase. For alloys with 2 ?? x ?? 10, the liquid is found to undergo ternary quasi-peritectic reaction with primary Ti3Sn, L+Ti3Sn ?? ??-Ti+FeTi, leading to formation of another kind of FeTi. In all the other alloy compositions (3.85 ?? x ?? 10), Ti3Sn and FeTi dendrites are observed in the suction cast alloys with profuse amount of Ti3Sn being formed for alloys with x ?? 4.5. The current study conclusively proves that the liquid undergoes ternary quasi-peritectic reaction involving four phases, L + Ti3Sn ?? ??-Ti + FeTi, which lies at the invariant point Ti69.2±0.8Fe27.4±0.7Sn3.4±0.2 (denoted by P). Below P, there is one univariant reaction, i.e., L ?? ??-Ti + FeTi for all alloy compositions, whereas above P, liquid undergoes one of the univariant reactions, i.e., L + ??-Ti ?? Ti3Sn (Sn = 2, 2.5, 3, and 4.5 at. pct) or L + FeTi ?? Ti3Sn for alloys (Sn = 6, 10 at. pct). For alloy with Sn = 3.85 at. pct, the ternary quasi-peritectic reaction is co-operated by two monovariant eutectic reactions, i.e., L ?? ??-Ti + FeTi below P and L ?? FeTi + Ti3Sn above P. Detailed microstructural information allows us to construct liquidus projection of the investigated alloys. The results are critically discussed in the light of available literature data.  相似文献   

9.
The red long-time luminescent material Y2O2S:Eu3+, M (M = Mg, Ca, Sr, Ba) was prepared by high temperature solid-state method. The XRD result of the sample showed that the crystal phase was Y2O2S, which belong to hexagonal system, and no new crystal phase were by doping different amount of Mg, Ca, Sr, Ba. The excitation spectrum was a broad band within 200 × 400 nm region, the characteristic peaks of emission spectrum were located at 583, 595, 597, 617, 627, 707 nm. There was no marked change in excitation spectra, emission spectra and maximum of their wavelengths of the luminescent materials by doping with different ions. The luminescent intensity of the phosphors were stronger when the concentration of doping ions was Mg/Y = 6%, Ca/Y = 4%, Sr/Y = 8%, Ba/Y = 2.5%, respectively. Its sequence of luminescent intensity from high to low is Sr > Ba > Mg > Ca.  相似文献   

10.
It has been shown that a plot of the Φ function, defined by — (G tr — Go)/Ttr where Gtr andG o are respectively the Gibb’s free energies at the hcp → bcc allotropie transformation temperature(T tr ) and at absolute zero, vs the entropy (Str) of the hcp phase at Ttr is linear. This concept of the Φ function and its relation toS tr can be extended to alloys with the aid of the ‘central atoms’ solution model. Its use has been demonstrated with respect to the Ti-Zr system where the estimated transformation temperatures are shown to be within the (hcp + bcc) phase field.  相似文献   

11.
The isothermal section of the Mn-Sn-Zn system at 500 °C was determined with 20 alloys. The alloys were prepared by melting the pure elements in evacuated quartz capsules. The alloy samples were examined by means of X-ray diffraction (XRD) and scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy. A new ternary phase Mn4Zn8Sn (λ) was found to have a bcc structure with a lattice parameter a = 0.92508 (5) nm. Its composition range spans 25 to 35 at. pct Mn, 4 to 8 at. pct Sn, and 55 to 70 at. pct Zn. The Zn is substituted for Mn in Mn3Sn, Mn2Sn, and Mn3Sn2. The solubility of Zn in Mn3Sn, Mn2Sn, and Mn3Sn2 was measured to be about 17, 12, and 4 at. pct, respectively. The phase boundaries of the liquid and β-Mn phases were well established. The following 3 three-phase equilibria were well determined: (1) β-Mn + ε-MnZn3 + Mn3Sn, (2) λ + Mn3Sn + Mn2Sn, and (3) L + λ + Mn2Sn. The additional 5 three-phase equilibria, which are ε-MnZn3 + λ + Mn3Sn, ε 1-MnZn3 + ε-MnZn3 + λ, ε 1-MnZn3 + λ + L, Mn2Sn + L + MnSn2, and Mn3Sn2 + MnSn2 + Mn2Sn, were deduced and shown with dashed lines in the present isothermal section.  相似文献   

12.
This study investigates the Sn-Co-Cu ternary system, which is of interest to the electronics industry. Ternary Sn-Co-Cu alloys were prepared, their as-solidified microstructures were examined, and their primary solidification phases were determined. The primary solidification phases observed were Cu, Co, Co3Sn2, CoSn, CoSn2, Cu6Sn5, Co3Sn2, γ, and β phases. Although there are ternary compounds reported in this ternary system, no ternary compound was found as the primary solidification phase. The directional solidification technique was applied when difficulties were encountered using the conventional quenching method to distinguish the primary solidification phases, such as Cu6Sn5, Cu3Sn, and γ phases. Of all the primary solidification phases, the Co3Sn2 and Co phases have the largest compositional regimes in which alloys display them as the primary solidification phases. There are four class II reactions and four class III reactions. The reactions with the highest and lowest reaction temperatures are both class III reactions, and are L + CoSn2 + Cu6Sn5  =  CoSn3 at 621.5 K (348.3 °C) and L + Co3Sn2 + CoSn = Cu6Sn5 at 1157.8 K (884.6 °C), respectively.  相似文献   

13.
《粉末冶金学》2013,56(2):193-198
Abstract

The microstructural stability of the Sn–3·8%Ag–0·7%Cu solder alloy was investigated by studying microstructural changes caused by heating small samples for various times, up to 1000 h, at 150°C. The first change, evident at high magnification after heating for 1 h, occurred from the as cast lamellar plus fibrous form of the Ag3Sn and Cu6Sn5 interdendritic eutectic phases to a particulate form. With further heating, coarsening of the two compound phases occurred, gradually rendering the Sn dendrite pattern less distinct. Due to the very rapid diffusion of Cu in solid Sn, the Cu6Sn5 phase coarsened most rapidly, growing from its originally finely divided (200 nm) size in the ternary eutectic to form many particles up to 3 m m or more in size in a time of 100 h. At that time, nearly 50% of the total Cu was contained in these particles. The Ag3Sn phase coarsened more slowly. Approximate measurements of average particle size as a function of time suggested that coarsening occurs by Ostwald ripening, controlled by diffusion in the Sn phase.  相似文献   

14.
By means of concentration cells of the following type, Mg (l)MgCl2 in (LiCl-KCl)eut (l)Mg-Sn (1), the partial thermodynamic data of Mg in Mg-Sn liquid solutions have been obtained in the composition range of 0.1 ≤X Mg ≤ 0.75 and at temperatures from 950 to 1100 K. These values are compared with thermodynamic data reported in the literature and used for the evaluation to obtain a complete set of thermodynamic functions for phase diagram calculations and for further interpretation by the associate model. This model, which accepts the existence of ‘Mg2Sn as-sociates’ in the liquid alloys, enables calculations of viscosity by Kucharski’s method corre-lating properly with experimental data. Mutual correlations between thermodynamic properties, physical properties, structure, and the phase diagram of the Mg-Sn system were shown to in-dicate a maximum chemical short-range order close to the composition Mg2Sn.  相似文献   

15.
Observations on the microstructure and orientation relations in the V-H system were made using optical, X-ray, and electron microscopy techniques. In the two phase α+ β region the axes of the β (bct) vanadium hydride were shown to be slightly tilted away from the cube axes of the α (bcc) vanadium. Metallographie observations of a polished (100) crystal showed two different surface features associated with the formation of the β hydride depending on the concentration. In the two phaseβ + γ region the orientation relation between the β(bct) phase and the γ (fcc) phase is such that the (100)γ || (110)r and [001]γ || [001]γ.  相似文献   

16.
High-temperature isoperibolic calorimetry has been used to measure the partial enthalpies of mixing for yttrium in the Si - Mn - Y ternary system at 1775 K along sections with various atomic ratios of silicon to manganese (0.85/0.15; 0.7/0.3; 0.6/0.4; 0.5/0.5; 0.3/0.7) for yttrium concentrations in the range 0 < xY < 0.4 together with the partial molar enthalpies of manganese for xSi/xY = 0.8/0.2. The integral enthalpies of mixing have been calculated from the partial ones for yttrium by Darken’s method. The addition of yttrium to the Si - M binary system to give the ternary Si - Mn - Y system increases the exothermic effects of the alloying substantially. There is a substantial effect on the thermodynamic parameters of the ternary alloys from the atomic interactions in the Si - Y and Si - Mn binary systems.__________Translated from Poroshkovaya Metallurgiya, Nos. 3–4(442), pp. 64–69, March–April, 2005.  相似文献   

17.
Ab-initio density functional theory (DFT) calculations were performed to study alloying effects on hcp Mg. The alloy solid solution strengthening represented by bond strength enhancement in alloys, elastic properties, thermal expansion coefficients, and electronic structures of Mg-based alloys was investigated. Results show that alloying additions with sp-metal Al and rare earth (RE) Y are capable of increasing the bond strength, with the addition of Y achieving a better effect. The bond strength enhancement due to an RE Y addition is associated with a hybridization between the d-orbital of Y and the p-orbital of the Mg atoms near the Fermi energy, and this was consistent with the electron localized function (ELF) evaluations showing that more localized and stronger covalent bonds are formed between Y and Mg atoms. It is also found that alloying additions of Al, Zn, and Y are not capable of increasing elastic coefficients and moduli, indicating that bond strength enhancement could play a major role in alloy solid solution strengthening in Mg-based alloys. Possible reasons for the elastic properties accompanying the alloying addition are given from the electronic point of view. Furthermore, from the calculated negative Cauchy pressure (C 13C 44 < 0), it is concluded that the chemical bonds between Y and Mg atoms show angular characteristics.  相似文献   

18.
In this study, a molten salt co-reduction method was proposed for preparing Y–Al intermediate alloys and the electrochemical co-reduction behaviors of Y(III) and Al(III) and the reaction mechanism of intermetallic compound formation were investigated by transient electrochemical techniques. The results show that the reduction of Y(III) at the Mo electrode is a reversible electrochemical process with a single-step transfer of three electrons, which is controlled by the mass transfer rate. The diffusion coefficient of Y(III) in the fluoride salt at a temperature of 1323 K is 5.0238 × 10?3 cm2/s. Moreover, the thermodynamic properties associated with the formation of Y–Al intermetallic compounds were estimated using a steady-state electrochemical method. Y–Al intermediate alloy containing 92 wt% yttrium was prepared by constant current electrolysis at 1323 K in the LiF–YF3–AlF3–Y2O3 (6 wt%)–Al2O3 (1 wt%) system at a cathodic current density of 8 A/cm2 for 2 h. The Y–Al intermediate alloy is mainly composed of α-Y2Al and Y phases. The development and application of this innovative technology have solved major technical problems, such as a long production process, high energy consumption, and serious segregation of alloy elements at this stage.  相似文献   

19.
20.
In this study, the microstructure and mechanical properties of Cu6Sn5 and Cu3Sn intermetallic joints, formed by the transient liquid phase (TLP) soldering process with and without the assistance of ultrasonic waves (USWs), were compared. After the application of USWs in the TLP soldering process, Cu-Sn intermetallic compounds (IMCs) exhibited a novel noninterfacial growth pattern in the molten solder interlayer. The resulting Cu6Sn5 and Cu3Sn joints consisted of refined equiaxed IMC grains with average sizes of 3 and 2.3 µm, respectively. The Cu6Sn5 grains in the ultrasonically soldered intermetallic joints demonstrated uniform mechanical properties with elastic modulus and hardness values of 123.0 and 5.98 GPa, respectively, while those of Cu3Sn grains were 133.9 and 5.08 GPa, respectively. The shear strengths of ultrasonically soldered Cu6Sn5 and Cu3Sn joints were measured to be 60 and 65 MPa, respectively, higher than that for reflow-soldered intermetallic joints. Ultrasonically soldered Cu6Sn5 and Cu3Sn joints both exhibited a combination of transgranular and intergranular fractures during shear testing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号