共查询到18条相似文献,搜索用时 203 毫秒
1.
在AZ31B镁合金板材的板面内沿不同方向进行单向拉伸和压缩试验,研究挤压板材的力学性能。结果表明,变形AZ31B镁合金板材具有显著的各向异性和拉压非对称性。在板面内,沿挤压方向拉伸时的屈服应力明显地比沿同方向压缩和沿其他方向拉伸或压缩时的高(约2倍);沿45°斜向拉伸的屈服应力和抗拉强度较低,而延伸率最高;这种非对称性主要表现为屈服非对称和塑性流动非对称,即拉压的屈服应力不相等和拉压应力-应变曲线形状不同,压缩曲线表现出特殊的"S"型。基于晶体塑性理论,讨论了引起变形镁合金的各向异性和拉压非对称性力学性能的变形机理。 相似文献
2.
目的 针对AZ31镁合金材料在挤压成形过程中变形较为困难的问题,研究AZ31镁合金在不同挤压速度下的微观组织和力学性能演化规律。方法 采用DEFORM–2D软件对0.5、3、12、20 mm/s这4种挤压速度下材料挤压变形过程中的材料流动趋势、应变场、应力场和温度场等进行数值模拟和分析。结果 AZ31镁合金材料的挤压温度场随着挤压速度的增加显著升高,不同速度挤压后坯料的温度模拟值与实验结果实测值的变化趋势吻合。随着挤压速度的增大,材料的晶粒尺寸先增大后减小,0.5、3、12、20 mm/s这4种速度挤压后的晶粒尺寸分别为1.0、0.9、1.4、1.1 μm,变形材料的加工硬化率呈现出先增大后减小的趋势。在0.5 mm/s的挤压速度下,材料内部的微观组织均匀性较差,然而强度较高,抗拉强度约为416 MPa;在挤压速度为12 mm/s时,合金的晶粒组织最均匀,同时其综合力学性能较好,屈服强度为220 MPa,伸长率为17.3%,其加工硬化率也达到最大,为0.184。结论 通过DEFORM数值模拟能够为镁合金挤压变形提供指导。对于镁合金挤压变形,采用较低的挤压速度(约0.5 mm/s)对AZ31镁合金进行挤压变形,能够获得强度较高、伸长率相对偏低的挤压棒材,采用较高的挤压速度(约12 mm/s),则更有利于获得综合性能优良的镁合金挤压棒材。 相似文献
3.
4.
目的研究大变形量热轧、累积叠轧和普通热轧3种不同加工工艺及后续热处理对AZ31镁合金的组织及室温力学性能的影响。方法将均匀化处理后的AZ31原始样品采用大变形热轧、累积叠轧和普通热轧3种不同加工工艺制备成板材,并进行了后续热处理。利用EBSD技术和力学性能测试,解释了其组织和性能的关系。结果剧烈塑性变形工艺及适宜的热处理工艺,可使AZ31镁合金保持高强度的同时还可兼顾优良的室温延伸率。大变形量热轧工艺制备的AZ31镁合金板材的细晶组织及室温拉伸性能,可与累积叠轧等传统剧烈塑性变形工艺相媲美,屈服强度达到289 MPa,延伸率为7%。结论与普通热轧工艺制得的AZ31镁合金板材相比,大变形量热轧工艺及累积叠轧工艺制得的板材具有更高的强度和塑性。剧烈塑性变形镁合金在低温退火后获得的混晶组织,具有优良的综合力学性能,强度比形变态样品略低,而塑性与完全退火样品相同甚至更好。 相似文献
5.
6.
7.
8.
采用连续变断面循环挤压技术(CVCE)对AZ31镁合金进行循环挤压。采用光学显微镜、电子拉伸机等设备,分析变形前及不同循环道次后AZ31镁合金的微观组织和力学性能。结果表明:AZ31镁合金经10循环CVCE后,平均晶粒尺寸由变形前25.3μm有效细化到5.5μm;伸长率提高到34.3%,抗拉强度下降到200MPa。由于晶粒细化效应,导致α相主要变形机制由1循环的孪生变为随后道次的位错滑移。抗拉强度的降低与挤压后(0001)晶面取向分布的分散性有关;伸长率的增大与晶粒细化和滑移面的激活有关。 相似文献
9.
10.
11.
工艺参数对AZ31镁合金往复挤压过程的影响 总被引:1,自引:0,他引:1
运用刚黏塑性有限元法对不同工艺参数下的AZ31镁合金往复挤压过程进行了热力耦合数值模拟,研究了不同初始坯料温度、挤压速率和摩擦因数对往复挤压过程中等效应变、等效应力及温度场的影响。结果表明:在往复挤压过程中,挤压速率对等效应变峰值影响不大,随着挤压速率的增大,工件内温度峰值直线上升,温度分布不均匀程度增大,应力峰值先增加后减小;随着初始坯料温度升高,等效应力峰值呈直线趋势减小;摩擦因数对温度峰值的影响很小,随着摩擦因数的增大,等效应变峰值先增大然后趋于平稳,等效应力峰值增大,其增大幅度减小。 相似文献
12.
对AZ31镁合金在400℃条件下的轧制工艺进行了研究,在不同压下量、不同道次条件下分别进行了轧制实验,并对轧制后AZ31板材的组织和力学性能进行了研究。实验结果表明:在400℃条件下,以小变形量轧制,每道次压下量为1mm时,较好的加工工艺条件为轧制到第8道次,累积变形量50%;每道次轧制压下量为2mm时,较好的加工工艺条件为轧制到第2道次,累积变形量为25%;AZ31镁合金在大变形量下轧制易产生裂纹,裂纹的产生可能是由于随着累积变形量增加,内应力激增,在难变形的硬取向晶粒区或第二相处产生应力集中,萌生裂纹。裂纹尖端扩展经过的区域变形量较大,因而裂纹两侧存在再结晶细晶区域。 相似文献
13.
为了进一步提高镁合金转化膜防腐性能的影响,将铈基转化复合于在AZ31B镁合金植酸转化膜表面,制备了一种铈基一植酸复合转化膜,应用析氢实验、Tafel分析方法及SEM、EDS对AZ31B镁合金不同转化膜的防腐性能及表面微观结构及成份进行了研究。结果表明复合转化膜表面主要由C、O、P、Ce、Mg及Al元素所组成,复合转化膜相比于植酸转化膜及铈基转化膜具有更好的致密性,从而复合转化膜相比于植酸转化膜及铈基转化膜具有更好的防腐性能。 相似文献
14.
AZ31B镁合金表面锌系磷化膜制备工艺及性能研究 总被引:6,自引:0,他引:6
采用极化曲线分析方法(Tafel)及扫描电子显微镜(SEM)对AZ31B镁合金在不同磷化时间及不同磷化温度条件下所形成的锌系磷化膜的防腐性能及表面微观形貌进行了研究,并应用X射线衍射仪(XRD)、能谱仪(EDS)对最佳工艺条件下所形成的磷化膜的相组成以及磷化膜的成分进行了研究.结果表明:磷化时间及磷化温度对AZ31B镁合金磷化膜的防腐性能有较大影响,其最佳磷化时间为5min,最佳磷化温度为50℃;磷化膜的成分为Zn3(PO4)2·4H2O,Zn2Mg(PO4)2以及少量的单质Zn;在锌系磷化液中AZ31B镁合金中的Mg在微阳极发生溶解而Al没有溶解.此外还探讨了AZ31B镁合金表面的磷化反应机理. 相似文献
15.
在DEFORMTM软件平台上采用热/力耦合刚塑性有限元法,结合生产实际的压力加工工艺,对半连续铸造AZ31B镁合金11个道次的连续热轧变形过程中应力场、应变场与温度场的变化规律进行数值模拟.结果表明:变形过程中AZ31B镁合金变形体内的应力、应变和温度沿试样厚度方向分布不均匀.在该合金铸锭表面与轧辊接触的部位具有较高的应力,引起表面的应变增大,而铸锭中心部位的应力相对较小,应变也较小.在连续的每个道次的热轧过程中,轧辊与铸锭刚接触时接触部位的应力最大,轧制中期,应力变化不大,轧制后期应力明显减小;第9道次变形后,等效应变沿试样厚度方向分布变得较均匀;随着轧制道次的增加,变形区域内的应力逐渐增大.对比AZ31B合金样品多道次热轧行为的实验模拟和数值分析可知,实验结果与数值模拟结果能较好吻合,在较低应变速率(0.01,0.1s-1)条件下,合金的塑性变形流变应力随着道次的增加逐渐增大并出现一个稳态阶段;在较高应变速率(5,10s-1)条件下,变形的前3道次的加工硬化严重,随后有一个明显的道次间的退火软化阶段. 相似文献
16.
17.
A fluoride conversion coating was successfully prepared on AZ31B magnesium alloy by chemical reaction in hydrofluoric acid. Morphologies, composition, bonding strength, corrosion properties, in vitro cytotoxicity and antibacterial properties of the coating were investigated, respectively. The scanning electron microscopy observations revealed a dense coating with some irregular pores. The thin-film X-ray diffraction analysis indicated that the coating was mainly composed of MgO and MgF2. The electrochemical impedance spectroscopy results showed that the fluoride conversion coating significantly improved the corrosion resistance of AZ31B. The hydroxyapatite formed on the surface of the fluoride coated AZ31 B after being immersed in the simulated blood plasma indicated the good bioactivity of the material. The in vitro cytotoxicity test showed that the fluoride coated AZ31B alloy was not toxic to BMMSCs (human bone marrow-derived mesenchymal stem cells). It was also found that the fluoride coated AZ31 B alloy had antibacterial capability. 相似文献
18.
通过MTS试验机进行等温压缩实验,变形温度范围473~623 K、应变速率范围0.001~1 s-1,研究了AZ31镁合金的流变应力行为及其微观组织的演变规律.结果表明,变形温度、应变速率与峰值应力之间的相互关系可用指数模型来描述,其激活能约为138.13kJ/mol,而动态再结晶则是该合金在热变形过程中的主要软化机制和晶粒细化手段. 相似文献