首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Vehicular Ad hoc Networks, also known as VANETs, enable vehicles that are not necessarily within the same radio transmission range to communicate with each other. VANETs also allow vehicles to connect to Roadside Units (RSUs). The latter are connected to the Internet, forming a fixed infrastructure that offers them the capability of communicating with each other and with roaming vehicles. RSUs support cooperative and distributed applications in which vehicles and RSUs work together to coordinate actions and to share and process several types of information. RSUs have so far been used for different roles such as data disseminators, traffic directories, location servers, security managers, and service proxies. In this paper, we focus on routing; namely we exploit RSUs to route packets between any source and destination in the VANET. To our knowledge, this is the first attempt to use the RSU backbone to efficiently route packets to very far locations in VANETs by using geographic forwarding. We evaluate the RSU backbone routing performance via the ns2 simulation platform. We compare our scheme to existing solutions and prove the feasibility and efficiency of our scheme in terms of query delay, packet success delivery ratio, and total generated traffic.  相似文献   

2.
Routing in urban environment is a challenging task due to high mobility of vehicles in the network. Many existing routing protocols only consider density, link connectivity, delay, and shortest path information to send the data to the destination. In this paper, a routing protocol is proposed which uses the urban road network information such as multi-lane and flyover to send the data to the destination with a minimum packet forwarding delay. The next path for data forwarding is selected based on a path value calculated by the Road Side Unit for each path connected to a junction. This protocol uses Ground Vehicle to Ground Vehicle (GV2GV) communication, Flyover Vehicle to Flyover Vehicle (FV2FV) communication, and Flyover Vehicle to Ground Vehicle/Ground Vehicle to Flyover Vehicle (FV2GV/GV2FV) communication to enhance the routing performance. Simulation results show that proposed protocol performs better than P-GEDIR, GyTAR, A-STAR, and GSR routing protocols in terms of end-to-end delay, number of network gaps, and number of hops.  相似文献   

3.
Vehicular ad-hoc networks (VANET) routing is a key technology for efficient data forwarding in intelligent transport system (ITS). A novel routing scheme, Anchor-Geography based routing protocol (AGP), designed specifically for VANET communication in city environment is proposed in this paper. The reactive broadcasting is used for both getting destination location and routing discovery. Connectivity status and load balancing is considered in routing decision. In addition, the map information and the kinematics parameters are used for the vehicle trajectory prediction. Such a mobility prediction can provide a solution for the situation in which the destination moves away from the location in the routing discovery procedure. In simulation, VanetMobiSim is used as the traffic generator for more realistic traffic scenarios in VANETs than simple mobility model definition. Simulation results in NS2 show that AGP protocol gains obvious improvement in packet delivery ratio and average hops.  相似文献   

4.

Every year thousands of urban and industrial fires occur, which leads to the destruction of infrastructure, buildings, and loss of lives. One of the reasons behind this is the delayed transmission of information to the fire station and the nearer hospitals for ambulance service as the transmission of information is dependent on observer at the location where the fire is caught and cellular network. This paper proposed an automated routing protocol for the urban vehicular ad-hoc network to send the information from the location where the fire is caught to the nearest fire stations and hospitals with optimum service time. This transmission of information involves Road Side Unit (RSU) at the junction and the vehicles present in the transmission path. Selection of route to transmit faulty vehicle information from the RSU to the required faulty vehicle is based on a parameter called path value. The computation of path value is done by the attributes such as expected End To End (E2E) delay, the shortest distance to destination, the density of vehicle between the junctions, and attenuation. From the current junction, the selection of the next junction is based on minimum path value. The proposed routing protocol considers the performance parameters such as E2E delay, total service time (TST), number of network fragments or network gaps, number of hops, and attenuation for the propagation path for the evaluation of the proposed methodology. The proposed routing algorithm is implemented through OmNet++ and SUMO. Results obtained for the proposed routing protocol is compared with three existing VANET protocols (GSR, A-STAR, and ARP) in terms of End To End delay, number of hops, number of vehicular gaps, and Total Service Time (TST).

  相似文献   

5.
On-demand loop-free routing with link vectors   总被引:1,自引:0,他引:1  
We present the on-demand link vector (OLIVE) protocol, a routing protocol for ad hoc networks based on link-state information that is free of routing loops and supports destination-based packet forwarding. Routers exchange routing information reactively for each destination in the form of complete paths, and each node creates a labeled source graph based on the paths advertised by its neighbors. A node originates a broadcast route request (RREQ) to obtain a route for a destination for which a complete path does not exist in its source graph. When the original path breaks, a node can select an alternative path based on information reported by neighbors, and a node can send a unicast RREQ to verify that the route is still active. A node that cannot find any alternate path to a destination sends route errors reliably to those neighbors that were using it as next hop to the destination. Using simulation experiments in ns2, OLIVE is shown to outperform dynamic source routing, ad hoc on-demand distance vector, optimized link-state routing protocol, and topology broadcast based on reverse-path forwarding, in terms of control overhead, throughput, and average network delay, while maintaining loop-free routing with no need for source routes.  相似文献   

6.
刘静茹  朱浩  章国安 《电讯技术》2023,63(10):1472-1478
由于道路拓扑结构的限制以及车辆节点的快速变化,车联网路由协议正面临着很多挑战,例如道路的低连通性、较大的延时以及高开销等。为解决此类问题,提出了一种基于Q学习的地理位置路由协议。该协议将地理区域划分成大小一致的正方形,称为网格。在给定目的地的情况下,根据历史交通流信息计算出车辆从当前网格向不同方向的邻居网格移动的Q值,每辆车存储Q值表,通过查询Q值表选择最优下一跳网格。在选定的下一跳网格中,选择距离目的地最近的车辆,当最优下一跳网格中没有邻居车辆时,选择次优下一跳网格中的车辆。仿真结果表明,与其他基于地理位置的路由协议相比,所提协议能够提高分组投递率,降低传输延时并减少通信跳数。  相似文献   

7.
In this paper, we present a diagonal-intersection-based routing (DIR) protocol for vehicular ad hoc networks. The DIR protocol constructs a series of diagonal intersections between the source and destination vehicles. The DIR protocol is a geographic routing protocol. Based on the geographic routing protocol, source vehicle geographically forwards data packet toward the first diagonal intersection, second diagonal intersection, and so on, until the last diagonal intersection, and finally geographically reach to the destination vehicle. For given a pair of neighboring diagonal intersections, two or more disjoint sub-paths exist between them. The novel property of DIR protocol is the auto-adjustability, while the auto-adjustability is achieved that one sub-path with low data packet delay, between two neighboring diagonal intersections, is dynamically selected to forward data packets. To reduce the data packet delay, the route is automatically re-routed by the selected sub-path with lowest delay. The proposed DIR protocol allows the mobile source and destination vehicles in the urban VANETs. Experimental results show that the DIR protocol outperforms existing solutions in terms of packet delivery ratio, data packet delay, and throughput.  相似文献   

8.
Vehicular ad hoc network (VANET) is an emerging wireless communications technology that is capable of enhancing driving safety and velocity by exchanging real-time transportation information. In VANETs, the carry-and-forward strategy has been adopted to overcome uneven distribution of vehicles. If the next vehicle located is in transmission range, then the vehicle forwards the packets; if not, then it carries the packets until meeting. The carry mostly occurs on sparsely populated road segments, with long carry distances having long end-to-end packet delays. Similarly, the dense condition could have long delays, due to queuing delays. The proposed intersection-based routing protocol finds a minimum delay routing path in various vehicle densities. Moreover, vehicles reroute each packet according to real-time road conditions in each intersection, and the packet routing at the intersections is dependent on the moving direction of the next vehicle. Finally, the simulation results show that the proposed Intersection-Based Routing (IBR) protocol has less end-to-end delay compared to vehicle-assisted data delivery (VADD) and greedy traffic aware routing protocol (GyTAR) protcols.  相似文献   

9.
Most of the existing VANET routing protocols rely on information collected from beacons for making routing decisions such as next neighbor selection. Beacons are very small size hello messages that each vehicle broadcasts periodically. Owing to very small payload size of beacons as compared to the payload size of a data message, they can easily pass through even very weak links, through which a data message could never pass. Therefore, the use of beacon information for making routing decisions in a highly dynamic scenario such as VANETs may cause selection of routes through which data message can never be sent. Several researchers have given solutions that do not use beacon information for making routing decisions. But most of these solutions incorporate a large number of broadcasts to forward the data packets, causing wastage of bandwidth. In this paper, we present a beacon information independent geographic routing algorithm called BIIR, which reduces the number of broadcasts to forward the data packets by making intelligent use of information collected by the vehicle during previous route discovery attempts for a destination. Our simulation results have shown that the proposed algorithm outperforms the existing beacon less routing protocols in terms of the average number of broadcasts per data packet forwarding, packet delivery ratio and end to end delay experienced by the data messages.  相似文献   

10.
Real-time data transmission, especially video delivery over high-speed networks have very stringent constraints in terms of network connectivity and offered data rate. However, in high-speed vehicular networks, direct communication between vehicles and road side units (RSU) often breaks down, resulting in loss of information. On the other hand, a peer-to-peer based multihop network topology is not sufficient for efficient data communication due to large packet loss and delay. In this paper, a novel ‘moving cluster multiple forward’ (MCMF) architecture is proposed and investigated for efficient real-time data communication in high speed vehicular networks. MCMF involves novel aspects in relation to the formation of clusters and managing the communication between groups of vehicles and introduction of a hierarchical multiple forwarding mechanism which enables communication between any vehicle and RSU via other vehicles. Additionally, a novel protocol called ‘alternate cluster resource reuse’ (ACRR) is proposed and its detailed communication mechanism is presented. Simulation tests show how the use of MCMF and the ACRR protocol results in superior bit-rate performance—around three times that obtained in peer-to-peer multihop communications and twice that of MCMF with no ACRR protocol. Further, the average delay in MCMF-based transmissions from vehicle to RSU is around 50 % that of a peer-to-peer multihop communication mechanism. MCMF/ACRR has the potential to support multimedia traffic according to the IEEE 802.11p standard, even with a sparse investment in the infrastructure.  相似文献   

11.
Vehicular Ad Hoc Network (VANET) has been a hot topic in the past few years. Compared with vehicular networks where vehicles are densely distributed, sparse VANET have more realistic significance. The first challenge of a sparse VANET system is that the network suffers from frequent disconnections. The second challenge is to adapt the transmission route to the dynamic mobility pattern of the vehicles. Also, some infrastructural requirements are hard to meet when deploying a VANET widely. Facing these challenges, we devise an infrastructure‐less unmanned aerial vehicle (UAV) assisted VANET system called V ehicle‐D rone hybrid vehicular ad hoc Net work (VDNet), which utilizes UAVs, particularly quadrotor drones, to boost vehicle‐to‐vehicle data message transmission under instructions conducted by our distributed vehicle location prediction algorithm. VDNet takes the geographic information into consideration. Vehicles in VDNet observe the location information of other vehicles to construct a transmission route and predict the location of a destination vehicle. Some vehicles in VDNet equips an on‐board UAV, which can deliver data message directly to destination, relay messages in a multi‐hop route, and collect location information while flying above the traffic. The performance evaluation shows that VDNet achieves high efficiency and low end‐to‐end delay with controlled communication overhead. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
The aim of the research is to regulate the vehicular traffic in the most effective and efficient way in Vehicular Adhoc Networks (VANET). The challenges faced by the existing networks are ripple effect of reclustering, communication complexity, mobility, throughput and delay in an urban environment. Moreover unpredictable topology changes in VANET, obstruct expected packet delivery ratio and leads to congestion by overheads for link maintenance. The existing routing techniques suffer from excessive loss of data, delay and need for continuous monitoring where group member’s loss their link in randomwaypoint mobility scenarios. In this paper, a novel hierarchical model combining the features of hierarchical clustering, hybrid mobility model and location based 2hop Multicast Flooding (L2MF) for data forwarding has been proposed. By comparing the proposed protocol with previous protocols, the enhanced performance in packet delivery ratio, control overhead, and end-to-end delay has been proved.  相似文献   

13.
蔡蓉  章国安  金丽 《电信科学》2016,32(9):107-112
为了降低转发节点在转发范围内直接寻找一个最优或次优节点的复杂度、减少平均跳数和提高链路的可靠性,提出一种车载自组织网络中基于车辆密度的可靠性路由协议,转发节点首先根据道路车辆密度设置最优块的大小,并将转发范围分割成若干大小相等的块,然后选择其中一个距离转发节点最远的块,最后在被选中的块里根据可靠性原则选择连接时间最长的邻居节点作为中继节点进行转发。仿真结果表明,与EG-RAODV 相比,所提路由协议的平均跳数较少,平均每跳前进距离较大,能够使数据分组快速到达目的节点。  相似文献   

14.
A reliable VANET data dissemination method was proposed.The method used the traffic information to estimate data transmission delay in each road.Compressive sensing method was used to deduce the lower bound of data transmission delay among each intersection.These information could assist carrier to choose forward routing.In the process of data forward,the vehicle that its route more similar with the forwarding data will be chosen as the next carrier.Furthermore,data forward probability at intersection was deduced based on Markov model.The simulation results demonstrate that presented method achieves lower-delay and higher reliable performance than existed packet forward protocols.  相似文献   

15.
In vehicular ad hoc networks, vehicles may use a routing protocol to inform emergent events, for example, car accidents or traffic jams. Hence, many of the researchers are focused on minimizing the end‐to‐end delay of the routing protocol. However, some applications, for example, email or ftp, are not time critical, and radio spectrum is a limited resource. Hence, delay‐bounded routing protocol, whose goal is to deliver messages to the destination within user‐defined delay and minimize the usage of radio, has become an important issue. The delay‐bounded routing protocols deliver message to the destination by the hybrid of data muling (carried by the vehicle) and forwarding (transmitted through radio). When the available time is enough, the message will be delivered by muling; otherwise, it will be delivered by forwarding. However, in an urban area, there are many traffic lights, which may greatly affect the performance of the delay‐bounded routing protocols. Existing works do not consider the effect of traffic lights, and hence, it may adopt an improper delivery strategy and thus wastes much available time. To improve previous works, we propose a novel delay‐bounded routing protocol, which has considered the effect of traffic lights. Whenever a vehicle passes an intersection, it will gather the information of the traffic light and traffic load of the next road section, and thus, it can make a more accurate prediction and adopt a more proper strategy to deliver message. Simulation results show that the proposed protocol can make a better usage of the available time and uses less radio resource to deliver the message in time. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
In wireless sensor networks, sensor nodes are deployed to collect data, perform calculations, and forward information to either other nodes or sink nodes. Recently, geographic routing has become extremely popular because it only requires the locations of sensor nodes and is very efficient. However, the local minimum phenomenon, which hinders greedy forwarding, is a major problem in geographic routing. This phenomenon is attributed to an area called a hole that lacks active sensors, which either prevents the packet from being forwarded to a destination node or produces a long detour path. In order to solve the hole problem, mechanisms to detect holes and determine landmark nodes have been proposed. Based on the proposed mechanisms, landmark-based routing was developed in which the source node first sends a packet to the landmark node, and the landmark node then sends the packet to the destination. However, this approach often creates a constant node sequence, causing nodes that perform routing tasks to quickly run out of energy, thus producing larger holes. In this paper, a new approach is proposed in which two virtual ellipses are created with the source, landmark, and destination nodes. Then guide the forwarding along the virtual ellipses. Furthermore, a recursive algorithm is designed to ensure a shortcut even if there are multiple holes or a hole has multiple landmarks. Thus, the proposed approach improves both geographic routing and energy efficiency routing. Simulation experiments show that the proposed approach increases the battery life of sensor nodes, lowers the end-to-end delay, and generates a short path.  相似文献   

17.
Liu  Pingzeng  Wang  Xiujuan  Wen  Fujiang  Liu  Yuqi  Sun  Zhanquan  Zhang  Chao  Yan  Maoling  Fan  Linqiang 《Wireless Personal Communications》2018,102(1):275-292
Vehicular ad-hoc network (VANET) is an emerging paradigm for road transportation which minimizes traffic, accidents and improves fuel efficiency. VANET uses the position of the vehicle obtained from satellite system such as global positioning system (GPS), global navigation satellite system, Compass and Galileo as a location id in position-based routing protocol. The position obtained from the satellite system is likely to have an error due to environmental and technical issues which effect the routing performance. Thus, this paper proposes a position-based routing protocol which uses Kalman filter based location prediction technique to improve routing performance by minimizing location error. The routing protocol performance is evaluated on NS-3.23 simulator with real time GPS traces and simulator generated mobility on Two-ray ground and Winner-II propagation model for 500 m transmission range. Further, performance is compared with other prediction-based routing protocol on the metrics of packet delivery ratio, average delay and throughput.  相似文献   

18.
Recently, by using vehicle-to-vehicle and vehicle-to-infrastructure communications for VANET/ITS, the cooperative active safety driving (ASD) providing vehicular traffic information sharing among vehicles significantly prevents accidents. Clearly, the performance analysis of ASD becomes difficult because of high vehicle mobility, diverse road topologies, and high wireless interference. An inaccurate analysis of packet connectivity probability significantly affects and degrades the VANET/ITS performance. Especially, most of related studies seldom concern the impact factors of vehicular accidents for the performance analyses of VANET/ITS. Thus, this paper proposes a two-phase approach to model a distributed VANET/ITS network with considering accidents happening on roads and to analyze the connectivity probability. Phase 1 proposes a reliable packet routing and then analyzes an analytical model of packet connectivity. Moreover, the analysis is extended to the cases with and without exhibiting transportation accidents. In phase 2, by applying the analysis results of phase 1 to phase 2, an adaptive vehicle routing, namely adaptive vehicle routing (AVR), is proposed for accomplishing dynamic vehicular navigation, in which the cost of a road link is defined in terms of several critical factors: traffic density, vehicle velocity, road class, etc. Finally, the path with the least path cost is selected as the optimal vehicle routing path. Numerical results demonstrate that the analytical packet connectivity probability and packet delay are close to that of simulations. The yielded supreme features justify the analytical model. In evaluations, the proposed approach outperforms the compared approaches in packet connectivity probability, average travel time, average exhausted gasoline. However, the proposed approach may lead to a longer travel distance because it enables the navigated vehicle to avoid traversing via the roads with a higher traffic density.  相似文献   

19.
Increasing demand in user-friendly, computationally efficient and sophisticated vehicles led automobile industries to manufacture them with efficient onboard sensors, communication devices, resource rich hardware. Vehicular resources provide infotainment on-the-go. In mere future, every vehicle is a resource full machine. The vehicular resources which include computing power, storage and internet connectivity can be shared among the vehicles or can be lend over the internet to various customers. Vehicles can comprehensively make use of the resources available with road-side units (RSU’s) to communicate with other vehicles and RSU’s. Vehicular communications are useful especially in situations of accidents (or) natural calamities. Vehicles can update the RSU’s with information regarding such events. This information can then be broadcasted to the vehicles in that area or path. The proposed scheme ensures secure and efficient communications among nodes in a hierarchy consisting of vehicles, RSU’s, RSU co-ordinators and Trusted authority. The approach outlined in the paper can be used to decrease the overhead involved in secure transfer of information during communication.  相似文献   

20.
Vehicular wireless networks offer wireless multi‐hop communications between vehicles and roadside units (RSUs). To reduce deployment cost, the distance between two RSUs could be long; that is, the communications between an RSU and a vehicle may be carried out through multi‐hops among intermediate vehicles. When a vehicle is driven from one RSU to another, the wireless multi‐hop delay becomes more serious as the number of multi‐hop relays increases. The wireless multi‐hop delay is critical for some emergency service. For instance, in a traffic accident, when a patient was sent to the hospital by ambulance, the life information of the patient must be transmitted to the hospital on time through the multi‐hop wireless network. If the ambulance is moved from one RSU to another, the wireless multi‐hop delay becomes more and more serious as the ambulance is closing to another RSU. In this paper, we propose an RSU re‐routing strategy that dynamically alters multi‐hop communications until the best RSU with the shortest path using location information is found. Moreover, we compare the proposed strategy with the existing strategy in terms of broadcasting costs, re‐routing delay, and wireless multi‐hop delay of data transmission. Performance results show that the proposed strategy can reduce the wireless multi‐hop delay significantly. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号