共查询到14条相似文献,搜索用时 46 毫秒
1.
2.
高性能42nm栅长CMOS器件 总被引:1,自引:1,他引:0
研究了20~50nm CMOS器件结构及其关键工艺技术,采用这些创新性的工艺技术研制成功了高性能42nm栅长CMOS器件和48nm栅长的CMOS环形振荡器.在电源电压VDD为±1.5V下,NMOS和PMOS的饱和驱动电流Ion分别为745μA/μm和-530μA/μm,相应的关态漏电流Ioff分别为3.5nA/μm和-15nA/μm.NMOS的亚阈值斜率和DIBL分别为72mV/Dec和34mV/V,PMOS的亚阈值斜率和DIBL分别为82mV/Dec和57mV/V.栅长为48nm的CMOS 57级环形振荡器,在1.5V电源电压下每级延迟为19.9ps. 相似文献
3.
首次在国内成功地制作了栅长为70nm的高性能CMOS器件。为了抑制70nm器件的短沟道效应同时提高它的驱动能力,采用了一些新的关键工艺技术,包括3nm的氮化栅氧化介质,多晶硅双栅电极,采用重离子注入的超阱倒掺杂沟道剖面,锗预无定形注入加低能注入形成的超浅源漏延伸区,以及锗预无定形注入加特殊清洗处理制备薄的、低阻自对准硅化物等。CMOS器件的最短的栅长(即多晶硅栅条宽度)只有70nm,其NMOS的阈值电压、跨导和关态电流分别为0.28V、490mS/m和0.08nA/um;而PMOS阈值电压、跨导和有关电流分别为-0.3V、340mS/mm和0.2nA/um。并研制成功了100nm栅长的CMOS57级环形振荡器,其在1.5V、2V和3V电源电压下的延迟分别为23.5ps/级、17.5ps/级和12.5ps/级。 相似文献
4.
首次在国内成功地制作了栅长为 70 nm的高性能 CMOS器件 .为了抑制 70 nm器件的短沟道效应同时提高它的驱动能力 ,采用了一些新的关键工艺技术 ,包括 3nm的氮化栅氧化介质 ,多晶硅双栅电极 ,采用重离子注入的超陡倒掺杂沟道剖面 ,锗预无定形注入加低能注入形成的超浅源漏延伸区 ,以及锗预无定形注入加特殊清洗处理制备薄的、低阻自对准硅化物等 . CMOS器件的最短的栅长 (即多晶硅栅条宽度 )只有 70 nm,其 NMOS的阈值电压、跨导和关态电流分别为 0 .2 8V、 490 m S/m和 0 .0 8n A/μm ;而 PMOS阈值电压、跨导和关态电流分别为- 0 .3V、 34 0 m S/m m和 相似文献
5.
深入研究了亚30nm CMOS关键工艺技术,特别是提出了一种新的低成本的提高空穴迁移率的技术--Ge预非晶化S/D延伸区诱生沟道应变技术,它使栅长90nm pMOS空穴有效迁移率在0.6MV/cm电场下提高32%.而且空穴有效迁移率的改善,随器件特征尺寸缩小而增强.利用零阶劳厄线衍射的大角度会聚束电子衍射分析表明,在沟道区相应的压应变为-3.6%.在集成技术优化的基础上,研制成功了高性能栅长22nm应变沟道CMOS器件及栅长27nm CMOS 32分频器电路(其中分别嵌入了57级/201级环形振荡器),EOT为1.2nm,具有Ni自对准硅化物. 相似文献
6.
本文利用恒定迁移率、直接Id-Vgs和Y函数三种方法对纳米CMOS器件中提取的源/漏串联电阻(Rsd)与器件栅长(L)相关性进行了研究。结果表明,采用恒迁移率方法得到的Rsd具有与栅长无关的特性,纳米小尺寸CMOS器件的Rsd值在14.3Ω~10.9Ω之间。直接Id-Vgs和Y函数方法都得到了与L相关的Rsd值,误差分析发现从直接Id-Vgs和Y函数两种方法中提取的Rsd对L依赖性与提取过程中的栅极电压导致有效沟道迁移率(μeff)降低有关,推导过程中忽略了这种影响,Rsd值叠加了一个与栅长相关的量。本文计算了这个叠加的误差值,并得到消除此误差值之后各个栅长器件的Rsd值。 相似文献
7.
深入研究了亚30nm CMOS关键工艺技术,特别是提出了一种新的低成本的提高空穴迁移率的技术--Ge预非晶化S/D延伸区诱生沟道应变技术,它使栅长90nm pMOS空穴有效迁移率在0.6MV/cm电场下提高32%. 而且空穴有效迁移率的改善,随器件特征尺寸缩小而增强. 利用零阶劳厄线衍射的大角度会聚束电子衍射分析表明,在沟道区相应的压应变为-3.6%. 在集成技术优化的基础上,研制成功了高性能栅长22nm应变沟道CMOS器件及栅长27nm CMOS 32分频器电路(其中分别嵌入了57级/201级环形振荡器), EOT为1.2nm,具有Ni自对准硅化物. 相似文献
8.
深入研究了亚30nm CMOS关键工艺技术,特别是提出了一种新的低成本的提高空穴迁移率的技术--Ge预非晶化S/D延伸区诱生沟道应变技术,它使栅长90nm pMOS空穴有效迁移率在0.6MV/cm电场下提高32%.而且空穴有效迁移率的改善,随器件特征尺寸缩小而增强.利用零阶劳厄线衍射的大角度会聚束电子衍射分析表明,在沟道区相应的压应变为-3.6%.在集成技术优化的基础上,研制成功了高性能栅长22nm应变沟道CMOS器件及栅长27nm CMOS 32分频器电路(其中分别嵌入了57级/201级环形振荡器),EOT为1.2nm,具有Ni自对准硅化物. 相似文献
9.
在国内首次将等效氧化层厚度为1.7nm的N/O叠层栅介质技术与W/TiN金属栅电极技术结合起来,用于栅长为亚100nm的金属栅CMOS器件的制备.为抑制短沟道效应并提高器件驱动能力,采用的关键技术主要包括:1.7nm N/O叠层栅介质,非CMP平坦化技术,T型难熔W/TiN金属叠层栅电极,新型重离子超陡倒掺杂沟道剖面技术以及双侧墙技术.成功地制备了具有良好的短沟道效应抑制能力和驱动能力的栅长为95nm的金属栅CMOS器件.在VDS=±1.5V,VGS=±1.8V下,nMOS和pMOS的饱和驱动电流分别为679和-327μA/μm.nMOS的亚阈值斜率,DIBL因子以及阈值电压分别为84.46mV/dec,34.76mV/V和0.26V.pMOS的亚阈值斜率,DIBL因子以及阈值电压分别为107.4mV/dec,54.46mV/V和0.27V.结果表明,这种结合技术可以完全消除B穿透现象和多晶硅耗尽效应,有效地降低栅隧穿漏电并提高器件可靠性. 相似文献
10.
我们成功研制了栅长88 nm, 栅宽2 50 μm, 源漏间距为2.4 μm 的InP基In0.53Ga0.47As/In0.52Al0.48As高电子迁移率器件(HEMT)。栅是使用PMMA/Al/UVⅢ,通过优化电子束曝光时间及其显影时间的方式制作的。这些器件有比较好的直流及其射频特性:峰值跨导、最大源漏饱和电流密度、开启电压、ft和fmax 分别为765 mS/mm, 591 mA/mm, -0.5 V, 150 GHz 和201 GHz。这些器件将非常适合于毫米波段集成电路。 相似文献
11.
首次在国内成功地制作了栅长为70nm的高性能CMOS器件.为了抑制70nm器件的短沟道效应同时提高它的驱动能力,采用了一些新的关键工艺技术,包括3nm的氮化栅氧化介质,多晶硅双栅电极,采用重离子注入的超陡倒掺杂沟道剖面,锗预无定形注入加低能注入形成的超浅源漏延伸区,以及锗预无定形注入加特殊清洗处理制备薄的、低阻自对准硅化物等.CMOS器件的最短的栅长(即多晶硅栅条宽度)只有70nm,其NMOS的阈值电压、跨导和关态电流分别为0.28V、490mS/m和0.08nA/μm;而PMOS阈值电压、跨导和关态电流分别为-0.3V、340mS/mm和0.2nA/μm.并研制成功了100nm栅长的CMOS57级环形振荡器,其在1.5V、2V和3V电源电压下的延迟分别为23.5ps/级、17.5ps/级和12.5ps/级. 相似文献
12.
A High Performance Sub-100nm Nitride/Oxynitride Stack Gate Dielectric CMOS Device with Refractory W/TiN Metal Gates 总被引:1,自引:0,他引:1
在国内首次将等效氧化层厚度为1.7nm的N/O叠层栅介质技术与W/TiN金属栅电极技术结合起来,用于栅长为亚100nm的金属栅CMOS器件的制备.为抑制短沟道效应并提高器件驱动能力,采用的关键技术主要包括:1.7nm N/O叠层栅介质,非CMP平坦化技术,T型难熔W/TiN金属叠层栅电极,新型重离子超陡倒掺杂沟道剖面技术以及双侧墙技术.成功地制备了具有良好的短沟道效应抑制能力和驱动能力的栅长为95nm的金属栅CMOS器件.在VDS=±1.5V,VGS=±1.8V下,nMOS和pMOS的饱和驱动电流分别为679和-327μA/μm.nMOS的亚阈值斜率,DIBL因子以及阈值电压分别为84.46mV/dec,34.76mV/V和0.26V.pMOS的亚阈值斜率,DIBL因子以及阈值电压分别为107.4mV/dec,54.46mV/V和0.27V.结果表明,这种结合技术可以完全消除B穿透现象和多晶硅耗尽效应,有效地降低栅隧穿漏电并提高器件可靠性. 相似文献
13.
随着CMOS器件特征尺寸的不断缩小,绝缘栅介质层也按照等比例缩小的原则变得越来越薄,由此而产生的栅漏电流增大和可靠性降低等问题变得越来越严重。传统的SiO2栅介质材料已不能满足CMOS器件进一步缩小的需要,而利用高介电常数栅介质(高k)取代SiO2已成为必然趋势。综述了国内外对纳米尺度CMOS器件高k栅介质的等效氧化层厚度(EOT)控制技术的一些最新研究成果,并结合作者自身的工作介绍了EOT缩小的动因、方法和展望。 相似文献
14.
提出了电荷自补偿技术,此技术利用P型多米诺电路动态结点的放电对N型多米诺电路的动态结点充电,并在此技术基础上综合应用双阈值技术和多电源电压技术,设计了新型低功耗、高性能Zipper C?dOS多米诺全加器.仿真过程中提出了功耗分布法,精确找到了电荷自补偿技术的最优路径.仿真结果表明,在相同的时间延迟下,与标准Zipper CMOS多米诺全加器、双阈值Zipper CMOS多米诺全加器、多电源电压Zipper CMOS多米诺全加器相比,新型Zipper CMOS多米诺全加器动态功耗分别减小了37%、35%和7%,静态功耗分别减小了41%,20%和43%.最后,分析并得到了新型全加器漏电流最低的输入矢量和时钟状态. 相似文献