首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 343 毫秒
1.
针对目前地层层析成像算法中正演算法存在计算量大、计算速度慢的问题,以图像处理器(GPU)为核心,研究并实现了一种基于GPU平台的时域有限差分(FDTD)正演算法。CUDA是一种由NVIDIA推出的GPU通用并行计算架构,也是目前较为成熟的GPU并行运算架构。而FDTD正演算法本身在算法特性上满足并行的要求,二者的结合将极大地加速程序的计算速度。在基于标准Marmousi速度模型的正演模拟中,程序速度提升30倍,而GPU正演图像与CPU正演结果误差小于千分之一。算例表明CUDA可以大大加速目前的FDTD正演算法,并且随着GPU硬件自身的发展和计算架构的不断改进,加速效果还将进一步提升,这将有利于后续波形反演工作的进展。  相似文献   

2.
利用显卡(Graphics Processing Unit, GPU)加速时域有限差分(Finite-Difference Time Domain, FDTD)法计算二维粗糙面的双站散射系数, 介绍了FDTD的理论公式以及计算模型.采用各向异性完全匹配层(Uniaxial Perfectly Matched Layer, UPML)截断FDTD计算区域.重点讨论了基于GPU的并行FDTD计算粗糙面双站散射系数的并行设计方案计算流程.在NVIDIA GeForce GTX 570显卡上获得了50.7×的加速比.结果表明:通过对FDTD计算粗糙面散射问题的加速, 极大地提高了计算效率.  相似文献   

3.
合成孔径雷达(SAR)的数据运算量不断增加,图形处理器(GPU)为其处理提供了新的运算平台.但是GPU显存小,不足以容纳大场景SAR数据.通过研究聚束SAR成像模式特点,提出了一种适合GPU加速的子孔径成像方案,降低了该算法对GPU显存的要求.在Tesla C2075上的实验结果表明,该方案能够取得良好的成像效果,与C...  相似文献   

4.
 粒子群优化算法作为优秀的群体智能算法之一,已经被广泛应用于电磁优化问题中.通过与时域有限差分(FDTD)算法相结合,粒子群优化算法被运用于频率选择表面的优化设计.在此过程中,通过使用图形处理器(GPU)加速技术将FDTD算法速度提高近100倍,配合FDTD的宽频特性显著加速了优化过程.在此基础上,针对给定单元结构以及未知单元结构两种频率选择表面设计情况,分别采用带惯性权重的粒子群优化算法以及二进制离散粒子群优化算法进行优化.提出的两种优化流程在算例中得到验证与分析,证明了其可行性及高效性.  相似文献   

5.
研究了一种利用图形处理单元(GPU)加速数字全息图再现的算法。该算法充分利用GPU强大的并行计算能力,有效地缩短了数字全息图再现时间。比较了GPU加速运算和中央处理器(CPU)独立运算两种模式下,两种不同尺寸的数字全息图再现时间。结果表明,对于大小为2048 pixel×2048 pixel的数字全息图,GPU算法的再现时间可缩短至约1/15。利用该算法编写了易操作的通用软件。在高配置主机和高性能GPU硬件环境下,该软件不仅能够满足诸如数字全息显示、数字全息显微等系统实时功能的要求,还能够指导数字全息实验系统的快速搭建。  相似文献   

6.
刘昆  杜国宏  廖成 《微波学报》2010,26(5):50-52
提出一种全新的时域有限元运算加速方法--应用图形处理器(GPU)实现对时域有限元运算的提速.在GPU上通过OpenGL编程完成时域有限元运算,从而利用GPU的并行处理功能达到提高运算速度的目的.文中介绍了编程实现过程,并分析讨论了GPU提速过程中处理数据量不同具有不同表现的现象,进而得出随着处理数据量的增加,GPU相对于CPU的处理速度将会更快.文中以时域有限元的辐射算例验证了该算法的正确性和有效性,为时域有限元运算提速提供了一条有效途径.  相似文献   

7.
《信息技术》2019,(12):110-115
FPGA(现场可编程门阵列)作为人工智能应用的新加速载体,可替GPU对人工智能应用推理阶段进行加速。文中提出了一种新的人工智能应用加速方案,利用定点、矩阵压缩等方法对卷积神经网络(CNN)模型进行处理,优化CNN网络模型,并设计开发一套驱动软件框架以适配国产平台。该技术在飞腾1500A国产服务器上对卷积神经网络中的人脸识别与目标检测应用进行加速,运算性能较目前国产服务器运算能力提升30倍以上,实现自主可控的人工智能应用加速。  相似文献   

8.
针对多模式合成孔径雷达(SAR)成像处理中存在的计算效率不足问题,提出了一种基于GPU的多模式SAR统一成像并行加速方法。为充分利用GPU的显存资源,提高算法的运算效率,利用共享内存对矩阵转置、矩阵相乘等部分进行大规模数据并行计算。实验结果表明,该算法大幅度提升了多模式SAR成像的计算效率,最高加速比达到55.62,解决了GPU显存空间利用率较低的问题。  相似文献   

9.
随着通信仿真平台运算规模和复杂度的提升,以CUDA为代表的GPU加速技术成为缩短仿真时间、降低仿真设备购置及运行开销的有效手段。本文梳理了支持CUDA技术的GPU设备核心演进脉络,介绍了不同系列GPU产品的技术特点及应用领域,并以此为基础提出了一种研究CUDA加速仿真技术的试验环境。该环境以低端计算机、消费级GPU和千兆网络设备组建开发环境,以高端服务器、专业GPU运算卡和光纤路由器组建运行环境。这种试验环境搭建方案有利于实现性能与价格的平衡,并能较好跟进未来GPU软硬件技术的持续演进。  相似文献   

10.
针对数字全息重建算法计算速度慢、实时应用能力弱以及现有GPU加速策略跨平台移植性差等问题,该文提出一种利用开放运算语言(OpenCL)架构提高数字全息重建算法执行效率的方案。该方案充分利用OpenCL架构的异构协同计算能力,对数字全息卷积重建算法进行CPU+GPU的异构运行设计,并采用数据并行模式编程实现。针对不同分辨率数字全息图、不同GPU加速平台的测试结果表明,该加速策略的平均执行时间均比CPU低1个数量级,最高总加速比达到54.2,并行运算加速比甚至高达94.7,且具有规模增长性及良好的跨平台特性,加速效率显著,更加适用于数字全息技术的工程化实现及实时性应用场合。  相似文献   

11.
The analysis of high-field RF field-tissue interactions requires high-performance finite-difference time-domain (FDTD) computing. Conventional CPU-based FDTD calculations offer limited computing performance in a PC environment. This study presents a graphics processing unit (GPU)-based parallel-computing framework, producing substantially boosted computing efficiency (with a two-order speedup factor) at a PC-level cost. Specific details of implementing the FDTD method on a GPU architecture have been presented and the new computational strategy has been successfully applied to the design of a novel 8-element transceive RF coil system at 9.4?T. Facilitated by the powerful GPU-FDTD computing, the new RF coil array offers optimized fields (averaging 25% improvement in sensitivity, and 20% reduction in loop coupling compared with conventional array structures of the same size) for small animal imaging with a robust RF configuration. The GPU-enabled acceleration paves the way for FDTD to be applied for both detailed forward modeling and inverse design of MRI coils, which were previously impractical.  相似文献   

12.
GPU Computing   总被引:9,自引:0,他引:9  
The graphics processing unit (GPU) has become an integral part of today's mainstream computing systems. Over the past six years, there has been a marked increase in the performance and capabilities of GPUs. The modern GPU is not only a powerful graphics engine but also a highly parallel programmable processor featuring peak arithmetic and memory bandwidth that substantially outpaces its CPU counterpart. The GPU's rapid increase in both programmability and capability has spawned a research community that has successfully mapped a broad range of computationally demanding, complex problems to the GPU. This effort in general-purpose computing on the GPU, also known as GPU computing, has positioned the GPU as a compelling alternative to traditional microprocessors in high-performance computer systems of the future. We describe the background, hardware, and programming model for GPU computing, summarize the state of the art in tools and techniques, and present four GPU computing successes in game physics and computational biophysics that deliver order-of-magnitude performance gains over optimized CPU applications.  相似文献   

13.
在GPU通用计算平台上实现了一个钢琴独奏乐曲的乐谱识别系统,它读取WAV格式音频文件,利用GPU通用计算技术加速自相关函数算法来实现音高的识别,并综合考虑短时能量和基音周期的变化进行节拍划分。通过实际测试,验证了该乐谱识别系统的准确性,并证明了GPU并行计算对系统计算效率提升的效果:将计算时间减少到传统CPU计算时间的16%左右。  相似文献   

14.
GPU计算液晶自适应光学波前重构的并行性研究   总被引:1,自引:2,他引:1  
研究了图形处理器(GPU)计算液晶自适应波前重构的并行性。介绍了液晶自适应光学的Zernike模式波前重构算法,论述了GPU的通用架构和GPU实现波前重构的方法。在此基础上提出了利用GPU拥有的RGBA4个颜色通道进行并行计算,进一步加快计算速度,最后给出了实验结果。结果表明:在GPU计算波前重构时,利用RGBA颜色通道的并行计算,将计算速度提高了3倍多。  相似文献   

15.
随着GPU技术的快速发展,GPU的浮点运算能力飞速提升。将GPU浮点处理能力用于非图形计算领域正成为高性能计算领域的热点研究问题。Jacobi迭代法是科学计算中常用的计算方法。在分析了GPU和Jacobi迭代法特征的基础上,基于Nvidia的CUDA平台设计并实现了Jacobi迭代算法,并通过实验表明,相对于CPU取得了较好的加速效果。  相似文献   

16.
商凯  胡艳 《电子技术》2011,38(5):9-11
近几年图形处理器GPU的通用计算能力发展迅速,现在已经发展成为具有巨大并行运算能力的多核处理器,而CUDA架构的推出突破了传统GPU开发方式的束缚,把GPU巨大的通用计算能力解放了出来.本文利用GPU来加速AES算法,即利用GPU作为CPU的协处理器,将AES算法在GPU上实现,以提高计算的吞吐量.最后在GPU和CPU...  相似文献   

17.
星图配准是星图处理应用中的一个重要步骤,因此星图配准的速度直接影响了星图处理的整体速度.近几年来,图形处理器(GPU)在通用计算领域得到快速的发展.结合GPU在通用计算领域的优势与星图配准面临的处理速度的问题,研究了基于GPU加速处理星图配准的算法.在已有配准算法的基础上,根据算法特点提出了相应的GPU并行设计模型,利用CUDA编程语言进行仿真实验.实验结果表明:相较于传统基于CPU的配准算法,基于GPU的并行设计模型同样达到了配准要求,且配准速度的加速比达到29.043倍.  相似文献   

18.
刘昊 《电子质量》2010,(12):1-4
随着GPU的发展,其计算能力和访存带宽都超过了CPU,在GPU上进行通用计算具有成本低、性能高的特点。细胞神经网络由于其特有的性质,非常适合利用GPU进行并行计算,因此,该文提出了利用CU-DA实现的基于GPU的细胞神经网络异构算法,并应用在图像边缘检测上。实验结果证明,与传统的利用CPU实现的边缘检测方法相比,在速度上,基于GPU实现的图像边缘检测方法提高了数十倍,为细胞神经网络在实时图像、视频处理上的应用提供了新的方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号