首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A systematic study of the effect of reaction environment and catalyst surface on self-sustained oscillations during CO oxidation on a Pt/γ-Al2O, catalyst is presented in this paper. The catalyst, consisting of a fixed bed of small particles, was subjected to three different pretreatments: fresh, O2 - H2 treated and poisoned by SO2. Self-sustained oscillations, lasting for as long as desired, were manifest in a narrow range of temperatures and O2/CO ratios. The structure of the oscillatory pattern varied with catalyst pretreatment, however, in all cases the predominant feature consisted in transitions between low and high conversion levels (ignition-quenching). The amplitude and frequency of the oscillations varied with surface pretreatment, however, they decreased as temperature and O2:/CO ratio increases. Small temperature fluctuations of less than 6°C, which mirrowed concentration oscillations were also observed. A unique feature observed under certain conditions, was an overshoot of CO2 outlet concentration in excess to the 100% conversion, which indicated the participation of surface stored CO. The results are discussed in terms of competitive CO and O2 adsorption-reaction coupled with reactor and surface balances.  相似文献   

2.
采用浸渍法制备不同PdCl_2含量的贵金属催化剂,并对反应前后催化剂进行傅里叶红外和物理结构表征。结果表明,PdCl_2质量分数为3%的催化剂活性最高,可在70℃实现低浓度CO的完全转化。反应后,催化剂表面没有明显变化,催化剂比表面积增大,孔容及平均孔径呈减小趋势。研究进口CO浓度和空速对CO转化率的影响,结果表明,在一定浓度范围,提高进口CO浓度对CO转化率没有影响,浓度超过1 000×10~(-6)时,CO转化率下降;空速升高,CO转化率下降,温度越低,空速对CO转化率影响越大。  相似文献   

3.
在微型反应器中,采用泡沫金属镍为载体负载Cu-Ce-Zr-O催化剂,用于优先氧化去除富氢气体中的CO。考察Zr掺杂量、焙烧温度和催化剂预处理工艺对催化剂性能的影响。结果表明,CuCe_9Zr_(1.5)O_δ催化剂表现出较好的催化性能,反应温度(160~260)℃,CO转化率达99%以上,出口气浓度降至100×10~(-6)以下,CO选择性维持在40%左右;反应温度(180~240)℃,富氢气体中CO浓度降至60×10~(-6)以下。经H_2预处理后的催化剂低温活性和反应性能略有提高。  相似文献   

4.
李宏亮  董红微  于新海  王正东 《精细化工》2011,28(4):359-363,392
富氢气体中选择性氧化脱除CO是去除重整气中少量CO的有效方法。该文考察了K/Pt摩尔比对PtCoK/Al2O3催化剂涂层的影响。研究发现,适量K的添加能显著提高催化剂涂层的CO去除能力,最优K/Pt摩尔比是1~1.5,超过这个配比,CO脱除能力降低。将进口气氛中O2的体积分数从1%提高到1.5%,可提高CO转化率,但是对应的CO2选择性有所下降。富氢气中同时含有H2O和CO2对催化剂涂层活性影响微弱。连续反应100 h后,PtCoK/Al2O3催化剂涂层上CO转化率几乎未降低,催化剂涂层非常稳定,表明该催化剂涂层具有较强的工业化应用前景。  相似文献   

5.
采用浸渍法制备了CuCoOx/TiO2催化剂,并用XRD、TPR和BET进行了表征。350 ℃焙烧的催化剂CuCoOx/TiO2具有CuCo2O4尖晶石结构,比表面积大,对CO的催化氧化效果好,在110 ℃时可将1%的CO完全氧化成CO2。考察了催化剂焙烧温度、反应温度、CO进口浓度、空速对催化剂催化氧化CO性能的影响。该CuCoOx/TiO2催化剂具有良好的单独抗水和抗硫性能,可用于不同时存在二氧化硫和水的废气脱除CO。  相似文献   

6.
The dynamic behaviour of a single PEM fuel cell (PEMFC) with a PtRu/C anode catalyst using CO containing H2 as anode feed was investigated at ambient temperature. The autonomous oscillations of the cell potential were observed during the galvanostatic operation with hydrogen anode feed containing CO up to 1000 ppm. The oscillations were ascribed to the coupling of the adsorption of CO (the poisoning step) and the subsequent electrochemical oxidation of CO (the regeneration step) on the anode catalyst. The oscillations were dependent on the CO concentration of the feed gas and the applied current density. Furthermore, it was found that with CO containing feed gas, the time average power output was remarkably higher under potential oscillatory conditions in the galvanostatic mode than during potentiostatic operation. Accompanying these self-sustained potential oscillations, oscillation patterns of the anode outlet CO concentration were also detected at low current density (<100 mA/cm2). The online measurements of the anode outlet CO concentrations revealed that CO in the anode CO/H2 feed was partially electrochemically removed during galvanostatic operation. More than 90% CO conversion was obtained at the current densities above 125 mA/cm2 with low feed flow rates (100–200 mL/min).  相似文献   

7.
在固定床中考察了不同K2CO3植入浓度和不同温度条件下兰炭催化气化特性。结果表明,5%的催化剂植入浓度主要起到填充孔隙的作用,当植入浓度增加到10%以后,催化剂发生堆积会使颗粒表面及内部形成较多孔隙。提高气化温度可提高兰炭转化率,超过750℃之后碳转化率增幅减缓,催化剂饱和装载浓度为10%。在颗粒表面和开放孔隙中的高浓度C(O)才具有较高的脱附速率,并提高CO生成速率。在非催化条件下,随着气化的进行CO/CO2下降,而H2/(2CO2+CO)先增后减。在催化条件下,H2/(2CO2+CO)稳定在1.5~1.7。催化剂兰炭样品中出现了K2Ca(CO3)2双金属碳酸盐、K2O、KO2等活性组分,并随催化剂植入浓度的增加而增加。催化剂植入浓度的增加会导致失活现象加重,但兰炭在750℃条件下气化1 h 催化剂没有完全失活。  相似文献   

8.
Self-sustained, isothermal oscillations in outlet species concentrations were observed under certain steady inlet conditions in the case of the CO—NO—O2—H2O reaction system on Pt/γAl2O3 catalyst in a fixed-bed tubuiar reactor. The oscillations were mostly aperiodic, and for fixed inlet concentrations of the other species, they occurred in a rather narrow window of inlet oxygen concentrations near the stoichiometric point. The amplitude and frequency of these oscillations were affected by temperature and by the inlet concenlrations of CO and NO. Systemalic experiments, conducted to understand the cause of these oscillations, revealed that the catalyst aging procedure and the presence of water vapor induced the complex dynamic behavior observed in the CO—NO—O2—H2O system. The oscillations are explained qualitatively in terms of the competition among the various reactants for adsorption and subsequent reaction on the catalyst surface.  相似文献   

9.
以B2O3为助催化剂,采用研磨混合法改性Na2CO3催化剂,在固定床反应器中催化甲醇脱氢制备无水甲醛,考察催化剂的组成和反应条件等对催化反应的影响,采用XRD、TG-DTG、N2吸附-脱附、SEM和CO2-TPD等对催化剂进行表征。结果表明,以B2O3为助催化剂采用机械研磨混合法改性的Na2CO3催化剂,增加了催化剂的比表面积,在(10~30) nm增加了大量的孔道,平均孔径达18.44 nm,比表面积为1.65 m2·g-1,且B2O3分布均匀,改性后的催化剂碱性降低,在催化甲醇脱氢制备无水甲醛的反应中,催化活性明显高于Na2CO3催化剂,表明B2O3改性Na2CO3催化剂能提高甲醇转化率和甲醛选择性。在B2O3/Na2CO3催化剂中B2O3质量分数为30%、甲醇进料质量分数为26%、反应温度为650 ℃和甲醇重时空速为2.94 h-1条件下,甲醇转化率达59.97%,甲醛选择性达83.28%。  相似文献   

10.
A reliable method to continuously monitor NH3 in a gas stream containing CO—NO—O2 and H2O has been developed. The method is based on a quantitative oxidation of NH3 to NO on a Pt catalyst. The extent of this reaction is affected by temperature, excess oxygen present, and space-velocity. There is a significant effect of inlet O2 concentration on extent of various reactions in the CO—NO—O2—H2O system on a Pt/γAl2O3 catalyst. At fixed space-velocity and catalyst temperature, and for fixed reactor inlet concentrations of CO and NO. there is negligible CO—NO reaction either in the absence of oxygen or in the presence of excess oxygen. However, short of the stoichiometric amount of O2 required for CO oxidation, there is appreciable CO—NO (and possibly also CO—NO—H2O) reaction whose extent increases with increasing oxygen concentration. This increase is especially dramatic in a narrow window of O2: concentrations near the stoichiometric point. Interestingly enough, near the stoichiometric point, self-sustained isothermal oscillations in the outlet CO and NO concentrations are also observed (Subramaniam and Varma. submitted for publication)  相似文献   

11.
采用共沉淀法同时制备了PdO/M-Al2O3(M=Ce、Zr、Ce-Zr)和PtO-PdO/M-Al2O3催化剂。考察了Pt的加入对PdO/M-Al2O3催化剂的影响,助剂Ce、Zr改性的PtO-PdO/Al2O3催化剂的甲烷催化燃烧反应性能以及催化剂预处理对催化反应性能的影响。结果表明,PtO-PdO/Ce-Al2O3催化剂的活性最好,其甲烷完全转化温度为475℃,比PdO/Ce-Al2O3催化剂低90℃。另外,用蒸馏水反复洗涤的催化剂相比于未经蒸馏水洗涤的催化剂具有较低的甲烷起燃温度和完全转化温度。  相似文献   

12.
采用共沉淀法同时制备了PdO/M-Al2O3(M=Ce、Zr、Ce-Zr)和PtO-PdO/M-AlO3催化剂.考察了Pt的加入对PdO/M-Al2O3催化剂的影响,助剂Ce、Zr改性的PtO-PdO/Al2O3催化剂的甲烷催化燃烧反应性能以及催化剂预处理对催化反应性能的影响.结果表明,PtO-PdO/Ce-Al2O3...  相似文献   

13.
以活性焦(AC)为载体、Fe和Ce为活性组分,采用等体积浸渍法制备了Fe2O3/AC和Ce?Fe2O3/AC催化剂,研究了Fe含量及Ce掺杂对Fe2O3/AC催化剂低温脱硝性能的影响,并对催化剂进行了表征. 结果表明,当Fe负载量为6wt%时,Fe2O3/AC催化剂的NOx转化率最高,240℃下达93.9%. 掺杂Ce后Ce?Fe2O3/AC催化剂的催化效率明显提高,当质量比Ce:Fe=0.5:6时,NOx转化率较高,120~200℃下NOx转化率比负载6wt% Fe的催化剂提高了5%?20%,且抗硫性能较好,240℃下通入100?10?6(vol) SO2,NOx转化率稳定在94.1%. 掺杂少量Ce可使γ-Fe2O3均匀分散在催化剂表面,且表面吸附氧Oα比例增大,催化剂的还原性增强,促进了选择性催化还原反应进行.  相似文献   

14.
利用浸渍法制备Ni-Co/Al2O3催化剂,考察催化剂组成、反应温度、水醇比、液体空速对乙醇水蒸气重整反应的影响。结果表明,Ni-Co/Al2O3催化剂中Co含量的增加会提高氢气和一氧化碳的选择性,降低甲烷和二氧化碳的选择性,催化剂Ni7.5Co7.5催化性能最佳,450℃时乙醇转化率达到100%,氢气选择性为79.78%,二氧化碳选择性为91.89%。反应温度会影响乙醇水蒸气重整制氢反应中相关反应的权重和产物的分布。加大水醇比降低一氧化碳选择性,提高二氧化碳选择性;提高液体空速,加大一氧化碳选择性。Ni-Co/Al2O3催化剂反应前后发生明显的物相重构,Co3O4被还原成Co,Co与Ni共同起活性作用,Co3O4作为催化剂前体在乙醇水蒸气重整中显示出良好的活性。  相似文献   

15.
利用浸渍法制备了不同组成的Ni-Fe/Al2O3催化剂,对催化剂进行了X射线衍射(XRD)表征。以乙醇水蒸气重整(SRE)反应为探针,采用固定床反应器考察了催化剂组成、反应温度对活性和选择性的影响。实验结果表明,Ni-Fe/Al2O3较Ni,Fe单独担载的Ni/Al2O3,Fe/Al2O3选择性高,低温活性好,Ni是主要活性组分,Ni,Fe配比影响活性和选择性,其中Ni10Fe5性能最佳。400℃时,乙醇转化率可达100%,H2,CO和CO2选择性分别55.4%,0.86%和82.18%;450℃时,乙醇转化率为100%,H2,CO和CO2选择性分别67.18%,4.30%和91.01%,且反应温度影响SRE反应系统中各相关反应在系统中的权重。  相似文献   

16.
The polarization performance of two PEM fuel cells (with anode PtRu/C catalyst) connected either in parallel or serial, was compared to the performance of a single PEM fuel cell in galvanostatic operation using CO-free H2 or 200 ppm CO-containing H2 stream as anode feed at ambient temperature. Spontaneous potential oscillations were observed experimentally for the coupled configuration with two cells connected in serial or parallel using CO-containing H2 feed at various current densities applied. The potential oscillations are ascribed by the dynamic CO adsorption and subsequent electrochemical CO oxidation on the anode. The measured anode outlet CO concentration was found to decrease with the order: single cell > parallel cells > serial cells at various current densities and anodic flow rates. The low anode outlet CO concentration (<10 ppm) at high current densities applied showed that CO in the anode feed was removed efficiently by the electrochemical CO oxidation occurring on the PtRu anode. The anode outlet CO concentration decreased as follows: a single cell > the parallel cells > the serial cells at broad range of current densities and anodic flow rates. The highest CO conversion and the highest average power output at equal hydrogen recovery degree were obtained with serially coupled fuel cells.  相似文献   

17.
An experimental study of axial temperature profiles in a nonadiabatic tubular fixed bed reactor has been made under the transient operation. The catalytic carbon monoxide oxidation occuring on a Pt/alumina catalyst has been used. Unlike the adiabatic conditions the velocity of a traveling temperature wave in a nonadiabatical arrangement depends on its axial position. In certain regions of inlet concentration multiple temperature fronts have been observed. For low inlet CO concentration a downstream temperature wave results and the lower (kinetic) steady state is dominant. For high inlet CO concentration an upstream propagating front results and the upper steady state is dominant. For a downstream moving wave oscillations of wave velocity, hot spot temperature and exit conversion have been measured. For certain operating conditions periodic behavior of temperature profiles in the reactor has been observed.  相似文献   

18.
Elementary-steps based mechanisms of CO–O2 and CO–N2O over rhodium catalyst were proposed and utilized to simulate experimental data from literature. The results showed that the mechanisms possess good prediction capability. It was found that the dissociation of adsorbed N2O is the rate limiting step of N2O reduction under conditions characterized by high CO coverages. The rather high light-off temperature (50 % conversion) of CO–N2O (638 K) compared to that of CO–O2 (453 K) is explained by the high temperature to initiate N2O dissociation to offer surface oxygen needed for CO oxidation. Removing CO out of the reaction system, the oxygen generated via the dissociation of adsorbed N2O accumulates on the surface of Rh, and finally leads to a poisoned catalyst and termination of the N2O reduction process. However, increasing the inlet CO concentration inhibits the adsorption of N2O to some extent, thus the reduction rate of N2O is lowered on the contrary. Analysis of kinetic parameters showed that facilitating CO desorption or the decomposition of adsorbed N2O leads to higher conversion of N2O, with the latter having larger influence.  相似文献   

19.
Measurements of catalyst temperature and outlet conversion on a metal honeycomb system give evidence that the CO oxidation may proceed chaotically in time over a range of inlet CO concentrations and temperatures. The catalyst used in this study was represented by a very thin layer of α-Al2O3, deposited on a metal honeycomb matrix, impregnated by Pd. Measurements were performed for 0.5, 1, 3, 5 and 7% CO. Theoretical calculations and experimental evidence indicated that pore and gas-to-solid heat and mass transfer are absent. For higher inlet temperatures chaotic oscillations become more “symmetrical” and finally disappears. For 1% CO the effect of surface memory was observed.  相似文献   

20.
Yttria-stabilized zirconia powders were prepared by the sol–gel method coupled with supercritical CO2 fluid-drying technology, using ZrOCl2·8H2O as the precursor, urea as the precipitant, and yttria as the stabilizer. The particles were characterized by X-ray diffraction, TEM and BET. The Co3O4/ZrO2(Y2O3) catalysts were prepared by the impregnation method. The content of cobalt was varied from 5 to 12 wt%. The prepared catalysts were calcined at 200–500 °C and the pretreating temperature was varied from 200–400 °C. The performance of CO catalytic oxidation was tested and the catalyst with 8% Co loading, calcined at 200 °C, and with a pretreating temperature of 300 °C, showed the highest catalytic activity. The temperature for 95% CO conversion was as low as 113 °C; and, the catalyst showed both good cycling stability and excellent long-term stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号