首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用射频等离子体增强化学气相沉积(RF-PECVD)法制备掺硼非晶硅(a-Si:H)薄膜,然后用脉冲快速光热退火(PRPTA)法对其进行固相晶化。研究结果表明:掺硼a-Si:H薄膜在550℃恒温条件下退火3h后,其结晶状况无明显变化;而通过加高温热脉冲可以在玻璃衬底上获得晶化较好的P型多晶硅薄膜。另外,非晶硅薄膜的掺硼浓度及脉冲条件对脉冲快速光热退火的效果有一定影响。  相似文献   

2.
AF. Meftah  AM. Meftah  A. Merazga 《Vacuum》2004,75(3):269-273
The present paper deals with dangling bonds creation in a-Si:H thin films under continuous light illumination with moderate intensity. Taking into account the equilibrium conditions of defect density given by the defect pool model, we propose that hydrogenated dangling bond is the dominant defect in good quality a-Si:H samples and the recombination occurs not only at weak SiSi bonds but also at SiHHSi configurations. The obtained dangling bonds creation kinetic according our model is in good agreement with experiments.  相似文献   

3.
用热丝辅助微波电子回旋共振化学气相沉积制备样品,通过红外吸收谱图和光衰退图,分析影响a-SiH薄膜光衰退稳定性的因素一方面,非晶硅网格中氢含量、氢硅键合方式以及氢的运动情况均对非晶硅材料的稳定性起着十分重要的作用,另一方面,在非晶硅的基体上生长少量微晶硅,可提高薄膜的稳定性.最终希望能通过两者的结合来探讨如何制备高光敏性和低光致衰退的非晶硅薄膜.  相似文献   

4.
Searching the many papers reporting on the optical characteristics of tin oxide thin films, an obvious question arises: what is the origin of the very large differences in the reported optical and electrical properties of these films? The objective of the present work is to resolve this question by applying a modeling approach, simulating the refractive index of SnO, SnO2, SnO + SnO2, and porous tin oxide films in the visible range of the spectrum under various structure and composition conditions. Using the semi-empirical model of Wemple and DiDomenico for the dielectric function below the interband absorption edge of ionic and covalent solids, and the effective-medium theory of Bruggeman, the refractive indices of SnO, SnO2, several mixtures of SnO and SnO2 and various porous tin oxide films were calculated. The resulting data are compared with some published data to suggest the compositional and structural characteristics of the reported oxides. The correlation between the optical properties of the studied thin films and film composition is also indicated. It is proposed that the large spread in reported optical data is possibly a spread in the composition of the samples.  相似文献   

5.
本文研究了 a-Si∶H 及 a-Si∶H/a-SiN_x∶H 多层膜光致发光的某些性质。实验研究表明,a-Si∶H 及其多层膜的光致发光峰值能量强烈地依赖于沉积偏压、a-Si∶H 层厚度和内应力,并对这些结果进行了讨论。  相似文献   

6.
Aluminum-doped zinc oxide (ZnO:Al) thin films (t = 68–138 nm) were prepared by thermal oxidation in air flow, at 720 K, of the multilayered metallic Zn/Al thin stacks deposited in vacuum onto glass substrates by physical vapor deposition. The effect of Al content (3.7–8.2 at.%) on the structural (crystallinity, texture, stress, surface morphology) and optical (transmittance, absorbance, energy band gap) characteristics of doped ZnO thin films was investigated. The X-ray diffraction spectra revealed that the Al-doped ZnO films have a hexagonal (wurtzite) structure with preferential orientation with c-axis perpendicular to the substrate surface. A tensile residual stress increasing with Al content was observed. The films showed a high transmittance (about 90%) in the visible and NIR regions. The optical band gap value was found to decrease with Al content from 3.22 eV to 3.18 eV. The results are discussed in correlation with structural characteristics and Al content in the films.  相似文献   

7.
In this work, the synthesis and characterization of molecular materials formed from K2[Cu(C2O4)2], 1,8-dihydroxyanthraquinone and its potassium salt are reported. These complexes have been used to prepare thin films by vacuum thermal evaporation. The synthesized materials were characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), fast atomic bombardment (FAB+) mass and ultraviolet–visible (UV–vis) spectroscopy. Electrical transport properties were studied by dc conductivity measurements. The electrical activation energies of the complexes, which were in the range of 0.36–0.65 eV, were calculated from their Arrhenius plots. Optical absorption studies in the 100–1100 nm wavelength range at room temperature showed thin films' optical band gaps in the 2.3–3.9 eV range for direct transitions. On the other hand, strong visible photoluminescence (PL) at room temperature was noticed from the thermally-evaporated thin solid films. The PL of all investigated samples were observed with the naked eye in a bright background. The PL and absorption spectra of the investigated compounds are strongly influenced by the molecular structure and nature of the organic ligand.  相似文献   

8.
CdO doped (doping concentration 0, 1, 3 and 16 wt%) ZnO nanostructured thin films are grown on quartz substrate by pulsed laser deposition and the films are annealed at temperature 500 °C. The structural, morphological and optical properties of the annealed films are systematically studied using grazing incidence X-ray diffraction (GIXRD), energy dispersive X-ray analysis (EDX), scanning electron microscopy (SEM), atomic force microscopy (AFM), Micro-Raman spectra, UV–vis spectroscopy, photoluminescence spectra and open aperture z-scan. 1 wt% CdO doped ZnO films are annealed at different temperatures viz., 300, 400, 500, 600, 700 and 800 °C and the structural and optical properties of these films are also investigated. The XRD patterns suggest a hexagonal wurtzite structure for the films. The crystallite size, lattice constants, stress and lattice strain in the films are calculated. The presence of high-frequency E2 mode and the longitudinal optical A1 (LO) modes in the Raman spectra confirms the hexagonal wurtzite structure for the films. The presence of CdO in the doped films is confirmed from the EDX spectrum. SEM and AFM micrographs show that the films are uniform and the crystallites are in the nano-dimension. AFM picture suggests a porous network structure for 3% CdO doped film. The porosity and refractive indices of the films are calculated from the transmittance and reflectance spectra. Optical band gap energy is found to decrease in the CdO doped films as the CdO doping concentration increases. The PL spectra show emissions corresponding to the near band edge (NBE) ultra violet emission and deep level emission in the visible region. The 16CdZnO film shows an intense deep green PL emission. Non-linear optical measurements using the z-scan technique indicate that the saturable absorption (SA) behavior exhibited by undoped ZnO under green light excitation (532 nm) can be changed to reverse saturable absorption (RSA) with CdO doping. From numerical simulations the saturation intensity (Is) and the effective two-photon absorption coefficient (β) are calculated for the undoped and CdO doped ZnO films.  相似文献   

9.
H.M. Ali  M. Raaif 《Thin solid films》2012,520(13):4418-4421
Thin films of pure cadmium have been deposited using electron beam evaporation technique. Effect of radio frequency (RF) plasma oxidation on structural, optical and electrical properties of cadmium thin films has been investigated. It was found that the RF plasma treatment affects on the physical properties of the oxidized cadmium films. Transmittance values of 87% in the visible region and 90% in the near infrared region have been obtained for cadmium oxide (CdO) film oxidized at a plasma-processing power of 600 W. The optical energy gap, Eg, was found to increase as the RF plasma-processing power increases. The resistivity values of 3 × 10− 3 and 5 × 10− 3 (Ω cm) have been obtained for CdO films oxidized at RF plasma-processing powers of 550 and 600 W respectively.  相似文献   

10.
Gex Sb40−x Se60 (x = 0, 2.42 and 23.41 at.%) thin chalcogenide films were deposited on glass and quartz substrates by the conventional thermal evaporation technique at 300 K. The chemical composition of the bulk material and as-deposited films were determined by energy dispersive analysis X-ray spectrometry (EDAX). X-ray diffraction pattern (XRD) of Gex Sb40−x Se60 (x = 0, 2.42 and 23.41 at.%) thin films indicates that they have amorphous structure. The optical transmission and reflection spectra were measured in the range of 500 to 2500 nm. The optical absorption coefficient spectra were studied for deposited samples. It is observed that the optical absorption edge shift to higher energy range, as the germanium content, x, increases in the film. The type of electronic transition, responsible for the optical properties, is indirect allowed transition. It is found that the optical band gap increases as the Ge content increases.The average coordination number (Nc) in Gex Sb40−x Se60 films increases, but the number of chalcogenide atoms remains constant. The number of Ge - Se bonds and the average bond energy of the system increase with the increase of the average coordination number. The optical band gap, Eg, increases with the increase of the average coordination number, (Nc). Also the energy gap, E04, is discussed in terms of its relation to the chemical composition. The dispersion of the refractive index (n) is discussed in terms of the Single Oscillator Model (SOM) (Wimple - Didomenico model). The single oscillator energy (E0), the dispersion energy (Ed) and the optical dielectric constant (?) are also estimated.  相似文献   

11.
TeO2 thin films were deposited on quartz substrates by rf reactive sputtering technique from a Te metal target. The obtained samples were annealed in an argon atmosphere at 450 °C for different annealing times up to 90 min. X-ray diffraction studies revealed that the as-grown samples were amorphous and there was no appreciable change in structure for a short annealing time. Thin films became polycrystalline with the tetragonal (α-phase) structure of tellurium dioxide crystal with the increase of the thermal annealing time. The refractive index and optical energy gap of the films were calculated by modelling transmittance spectra. The optical energy gap decreased continuously from 3.83 eV to 3.71 eV with increasing thermal annealing time.  相似文献   

12.
Undoped and Al-doped ZnO thin films were deposited on glass substrates by the spray pyrolysis method. The structural, morphological and optical properties of these films were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), UV–Vis spectroscopy, photoluminescence (PL) and photoconductivity (PC) measurements, respectively. XRD analyses confirm that the films are polycrystalline zinc oxide with the hexagonal wurtzite structure, and the crystallite size has been found to be in the range 20–40 nm. SEM and AFM analyses reveal that the films have continuous surface without visible holes or faulty zones, and the surface roughness decreases on Al doping. The Al-doped films have been found to be highly transparent (>85%) and show normal dispersion behavior in the wavelength range 450–700 nm. The doped films show only ultraviolet emission and are found to be highly photosensitive. Among all the films examined, at 300 °C the 1.0 at% Al-doped film shows the selective high response (98.2%) to 100 ppm acetone concentration over to methanol, ethanol, propan-2-ol, formaldehyde and hydrogen.  相似文献   

13.
CdTe thin films of different thicknesses were deposited by electrodeposition on stainless steel substrates (SS). The dependence of structural and optical properties on film thickness was evaluated for thicknesses in the range 0.17–1.5 μm. When the film is very thin the crystallites lack preferred orientation, however, thicker films showed preference for (111) plane. The results show that structural parameters such as crystallite size, lattice constant, dislocation density and strain show a noticeable dependence on film thickness, however, the variation is significant only when the film thickness is below 0.8 μm. The films were successfully transferred on to glass substrates for optical studies. Optical parameter such as absorption coefficient (α), band gap (Eg), refractive index (n), extinction coefficient (ke), real (?r) and imaginary (?i) parts of the dielectric constant were studied. The results indicate that all the optical parameters strongly depend on film thickness.  相似文献   

14.
Zr (IV) doped indium oxide thin films (55 nm) were deposited onto pure silica glass by the sol–gel dip coating technique utilizing the precursors of 6 wt% equivalent oxide content. Three different Zr (IV) oxide (ZrO2) dopant concentrations (5.0, 10.0 and 15.0 wt% w.r.t. total oxides) were chosen. XRD patterns suggested the films were of distinct cubic symmetry of In2O3. Nanostructured surface feature was revealed by FESEM images. Average cluster size decreased with increasing dopant concentration as evidenced from TEM study. Blue shift of band gap and UV cut off wavelength (lambda-50) occurred with increase in dopant concentration. The refractive index gradually increased with doping. Baking atmosphere plays an important role in tailoring the refractive index (RI) of the films and relatively high RI was obtained in the case of baking in pure oxygen. Presence of both free and bound excitons was detected by the photoluminescence (PL) study. The 5 wt% doped film exhibited relatively high PL intensity at 380 nm responsible for free exciton. The PL emissions gradually quenched with increase in dopant concentration. Similar behaviour was also observed when the film was baked in pure oxygen atmosphere.  相似文献   

15.
PbSe films have been deposited on glass and quartz substrates at room temperature by thermal evaporation technique. X-ray diffraction patterns of the obtained films showed that they have polycrystalline texture and exhibit cubic FCC structure. The optical constants, the refractive index n and absorption index k were calculated in the spectral range of 400-4000 nm from transmittance and reflectance data using Murmann’s exact equations. Both n and k are practically independent on the film thickness in the range 28 nm to 210 nm. From the analysis of absorption index data, an indirect allowed energy gap of 0.16 eV and direct allowed energy gap of 0.277 eV were obtained. Other direct allowed optical transitions were obtained with energy gap of 0.49 eV and may be due to the splitting of valence band at the Γ point due to the effect of spin-orbit interaction.  相似文献   

16.
Scandium oxide (Sc2O3) films were deposited by electron beam evaporation with substrate temperatures varying from 50 to 350 °C. X-ray diffraction, scanning electron microscopy, spectrometer, and optical profilograph were employed to investigate the structural and optical properties of the films. The refractive index and extinction coefficient were calculated from the transmittance and reflectance spectra, and then the energy band gaps were deduced and discussed. Laser induced damage threshold of the films were also characterized. Optical and structural properties of Sc2O3 films were found to be sensitive to substrate temperature.  相似文献   

17.
The optical properties of Bi2V1−xMnxO5.5−x {x = 0.05, 0.1, 0.15 and 0.2 at.%} thin films fabricated by pulsed laser deposition on platinized silicon substrates were studied in UV-visible spectral region (1.51-4.17 eV) using spectroscopic ellipsometry. The optical constants and thicknesses of these films have been obtained by fitting the ellipsometric data (Ψ and Δ) using a multilayer four-phase model system and a relaxed Lorentz oscillator dispersion relation. The surface roughness and film thickness obtained by spectroscopic ellipsometry were found to be consistent with the results obtained by atomic force and scanning electron microscopy. The refractive index measured at 650 nm does not show any marginal increase with Mn content. Further, the extinction coefficient does not show much decrease with increasing Mn content. An increase in optical band gap energy from 2.52 to 2.77 eV with increasing Mn content from x = 0.05 to 0.15 was attributed to the increase in oxygen ion vacancy disorder.  相似文献   

18.
Cubic cadmium sulphide (CdS) thin films with (111) preferential orientation were prepared by chemical bath deposition (CBD) technique, using the reaction between NH4OH, CdSO4 and CS(NH2)2. The films properties have been investigated as a function of bath temperature and deposition time. Structural properties of the obtained films were studied by X-ray diffraction analysis. The structural parameters such as crystallite size have been evaluated. The transmission spectra, recorded in the UV visible range reveal a relatively high transmission coefficient (70%) in the obtained films. The transmittance data analysis indicates that the optical band gap is closely related to the deposition conditions, a direct band gap ranging from 2.0 eV to 2.34 eV was deduced. The electrical characterization shows that CdS films' dark conductivities can be controlled either by the deposition time or the bath temperature.  相似文献   

19.
The effects of laser irradiation on the surface microstructure and optical properties of ZnO films deposited on glass substrates were investigated experimentally and compared with those of thermal annealing. X-ray diffraction (XRD) and atomic force microscopy (AFM) measurements showed that the irradiation treatment with an Ar+ laser of 514 nm for 5 min improves the crystalline quality of ZnO thin films through increasing the grain size and enhancing the c-axis orientation, with the effects similar to those of the thermal annealing at 500 °C for 1 h. Laser irradiation was found to be more effective both for the relaxation of the residual compressive stress in the as-grown films and for the modification of the surface morphology. A significant increase in the UV absorption and a widening in the optical band-gap of the films were also observed after laser irradiation.  相似文献   

20.
In this study ultrathin hydrogenated amorphous carbon (a-C:H) films have been grown onto the titanium and amorphous silicon (a-Si) overlayers by direct ion beam deposition using acetylene gas as a hydrocarbon source. X-ray photoelectron spectroscopy (XPS) was used for study of the DLC-Ti and DLC-Si interfaces. It was revealed that a-Si is a good interlayer for improvement of adhesion in the case of diamond-like carbon film deposition onto the steel substrate at room temperature. a-C:H film growth without substantial intermixing occurred on the a-Si. On the other hand, adhesion between the Ti interlayer and the diamond like carbon film was very sensitive to the deposition conditions (presence of the pump oil) as well as structure and stress level of the Ti film. It was explained by strong intermixing between the growing carbon film and Ti. Bad adhesion between the growing DLC film and Ti interlayer was observed despite formation of the TiC. At the same time, formation of the TiOx was not an obstacle for good adhesion. It is shown that composition of the used hydrocarbon gas, structure of the Ti thin film and mechanical stress in it had greater influence on adhesion with a-C:H film than elemental composition of the Ti interlayer surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号