首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of crosstalk introduced due to gain saturation in an optical amplifier when it is used for amplifying multiple channels in a wavelength division multiplexed (WDM) network employing ON-OFF keying with direct detection is studied. The system power penalty is quantified as a function of the amplifier input power, the number of channels, and the extinction ratio  相似文献   

2.
朱竹青  王发强  殷奎喜 《中国激光》2004,31(10):245-1251
对基于半导体光放大器(SOA)交叉增益调制(XGM)效应的全光波分复用一光时分复用(WDM—OTDM)转换后的两路时分复用输出信号的消光比(ER)特性进行了分析。研究了两路波分复用的输入抽运光和探测光的功率、波长、抽运光的消光比、数据速率以及半导体光放大器的偏置电流、腔长和模场限制因子对转换信号消光比的影响。模拟结果表明,增大抽运光输入功率,选择长波长抽运光,可以增加转换光相应信道消光比,但减小了相邻信道的输出消光比;增加抽运光消光比,可以提高转换光消光比,但各个信道增长幅度不同;减小探测光输入功率,选取短波长探测光波长,增加半导体光放大器的腔长和模场限制因子以及大的偏置电流可提高转换光消光比;对于两路或多路波分复用信号转换时分复用信号的过程中,一定要考虑转换光每个信道消光比的均衡。  相似文献   

3.
Spectral slicing WDM-PON using wavelength-seeded reflective SOAs   总被引:2,自引:0,他引:2  
《Electronics letters》2001,37(19):1181-1182
A method of implementing wavelength division multiplexed-passive optical network (WDM-PON) upstream channels based on spectral slicing with wavelength-seeded travelling-wave reflective semiconductor optical amplifier (SOA) modulators is described. A dense WDM comprising eight 1 nm slices, each modulated at a data rate of 1.25 Gbit/s are shown to operate over 25 km of standard fibre with negligible crosstalk and <1 dB dispersion penalty  相似文献   

4.
A new type of semiconductor optical amplifiers (SOAs) that can have a very low-channel crosstalk is proposed and demonstrated. By arranging the order of the gain materials with different saturation power, the SOA crosstalk is greatly reduced. This new type of SOA can be an ideal gain material for wavelength division multiplexed (WDM) amplification and integration in the access and metro environment.  相似文献   

5.
Four-wave mixing (FWM) is the most serious fiber nonlinearity associated with low-input optical power levels in long-haul multichannel optical systems employing dispersion-shifted fiber. To reduce the crosstalk due to FWM, a generalized suboptimum unequally spaced channel allocation (S-USCA) technique is proposed and investigated. Even though the developed technique is useful in combating FWM crosstalk in wavelength division multiplexing (WDM) lightwave systems with up to 12 channels, its main virtue is in designing multichannel WDM lightwave systems with more than 12 channels. Comparisons of power penalty due to FWM between equal channel spacing (ECS) systems and the S-USCA systems are presented. It is shown that for an intensity modulation/direct detection (IM/DD) transmission system operating in an optical bandwidth of 16 nm with 0 dBm (1 mW) peak optical input power per channel, while a conventional ECS WDM system with 0.84-nm channel spacing cannot even achieve a bit-error rate (BER)=10-9, the suboptimum technique developed in this paper, for the same minimum channel spacing, can achieve a BER=10-9 with an FWM crosstalk power of less than 1 dB at the worst channel in a 20-channel WDM system  相似文献   

6.
A simple theory for the crosstalk in multichannel wavelength-division multiplexing (WDM) communication systems caused by the cross gain saturation in semiconductor optical amplifier (SOA) is developed. It is shown that increasing the carrier recombination lifetime while reducing the differential gain in the SOA greatly mitigates the crosstalk. An SOA using type-II quantum wells with reduced recombination probability is designed, and its characteristics are numerically modeled for a number of different WDM systems. It is shown that when used as a preamplifier or in local/metro networks with a small number of amplifiers, error-free transmission can be achieved with the type-II SOA.  相似文献   

7.
In this paper, bit error rate and power penalty in a WDM receiver system in the presence of component crosstalk with finite interferers are studied using a simplified analysis and some optimum detection thresholds are suggested for minimum bit error rate. Error probabilities are calculated considering a unipolar bit stream of optical signals at the receiver input. Probability density function in the presence of crosstalk deviates from conventional Gaussian function. Effects of receiver noise, number of interfering channels and crosstalk levels on the receiver performance are shown. Optimum detection thresholds for minimum bit error rates in the WDM receiver in presence of component crosstalk are investigated and summarized in tabular form.   相似文献   

8.
Crosstalk in fiber Raman amplification for WDM systems   总被引:2,自引:0,他引:2  
The crosstalk between channels in Raman amplification for two-channel WDM system is calculated. Theory shows that severe crosstalk can occur even in the linear amplification (or pump undepletion) region. To ensure small crosstalk, the signal gain and injected pump power should be limited to values well below the threshold of Raman amplification. As a numerical example, a 30-dB gain penalty and 3-dB pump power penalty occur when a 30-dB signal-to-interference ratio (SIR) is required. Thus, the conversion efficiency of Raman amplification in WDM systems is very low  相似文献   

9.
This paper describes a novel design theory of long distance wavelength division multiplexed (WDM) dispersion-managed optical transmission systems. Assuming that the transmission distance, bit rate, and number of WDM channels are initially known, we investigate the optimum dispersion allocation and input power per channel to achieve the minimum channel spacing. Based on the design guidelines for single-channel and multichannel systems, we establish the optimal design strategy. Details of the design procedure are demonstrated for 2.5-, 5-, and 10-Gb/s 10000 km WDM systems by using computer simulations. Next, we study the impact of the fiber dispersion slope on the usable wavelength span, and show that the attainable capacity of the representative 5-Gb/s 10000 km WDM system employing the postcompensation scheme can not exceed 100 Gb/s. Finally, we propose several techniques to approach the ultimate capacity of the WDM system and show that up to 1 Tb/s (200×5 Gb/s) 10000 km system can be implemented without utilizing the in-line dispersion slope compensation scheme. We also discuss the 10 Gb/s-10000 km WDM system employing in-line dispersion slope compensation  相似文献   

10.
A theoretical study of channel crosstalk due to gain saturation in a laser amplifier in multichannel transmission is discussed. When the amplifier is gain-saturated, the gain of any channel is influenced by the light intensity of the other channels, which causes channel crosstalk in intensity-modulated multiplexing transmission. On-off-keying modulation systems with more than two channels are discussed. Considering the probability distribution, the power penalty due to crosstalk is presented for practical system design. Calculated examples reveal that the power penalty is dependent on both the level of gain saturation and the number of multiplexed channels  相似文献   

11.
High-output-power polarization-insensitive semiconductor optical amplifier   总被引:3,自引:0,他引:3  
A high-output-power 1550 nm polarization-insensitive semiconductor optical amplifier (SOA) was developed for use as a compact in-line optical amplifier. A very thin tensile-strained bulk structure was used for the active layer and active width-tapered spot-size converters (SSCs) were integrated on both input and output sides. The SOA module exhibited a high saturation output power of +17 dBm together with a low noise figure of 7 dB, large gain of 19 dB, and low polarization sensitivity of 0.2 dB for optical signals of 1550 nm wavelength. For the amplification of optical signals modulated at 10 Gb/s in the nonreturn-to-zero (NRZ) format, a good eye pattern without waveform distortion due to the pattern effect was obtained at an average output power of up to +12 dBm. Additionally, good amplification characteristics were demonstrated for the signal wavelength range corresponding to the C-band.  相似文献   

12.
We compare the output spectra and data streams of a conventional 1550-nm semiconductor optical amplifier (SOA) with its gain-clamped (GCSOA) counterpart, in order to assess the impact of gain clamping on cross-gain modulation (XGM) and difference frequency generation (DFG). Whereas the conventional SOA exhibits a large amount of crosstalk due to XGM, there is virtually no XGM present in the GCSOA. However, the XGM effect in the SOA shows evidence of diminished efficiency at moderate input levels. We observe much higher DFG levels from the GCSOA (roughly 10 dB greater than the SOA). These DFG levels are such that cascaded wavelength cross-connect devices, in-line amplifiers, and even optical gates could experience inhibited performance  相似文献   

13.
For pt.I see ibid., vol.46, no.8, p.1027-37 (1998). Four-wave mixing (FWM) in dispersion-shifted optical fiber is a major problem associated with low optical input power levels in optical wavelength-division multiplexed (WDM) systems. To reduce the crosstalk caused by FWM, a generalized suboptimum unequally spaced channel allocation (S-BISCA) technique has been proposed. While the S-USCA technique reduces the PWM power substantially, it also reduces the minimum channel spacing compared to conventional equal channel spacing (ECS) systems when the same number of carrier channels are accommodated in a fixed optical bandwidth. This results in more interchannel interference (ICI) when employing the S-USCA scheme. The power penalty of the ECS and the S-USCA systems caused by crosstalk and frequency drift are investigated and compared in this paper. The superior system performance region, where S-USCA systems out perform ECS systems, is also quantified. For 20-channel systems using an amplitude-shift keying (ASK) heterodyne detection scheme, for instance, results show that the S-USCA technique pays less power penalty up to bit rates of 5.5, 7.5, and 9.5 Gb/s, when all channels have identical states of polarization and the launched input power per channel Pin, equals to -6, -3, and 0 dBm, respectively  相似文献   

14.
The authors have analysed and designed a five-channel (one AM-VSB and four 2.5 Gbit/s baseband digital) hybrid WDM system, with cascaded in-line EDFAs for high capacity video trunking applications. Simultaneous transmission of high quality AM-VSB signals with CNR >50.5 dB and four 2.5 Gbit/s digital channels with negligible power penalty over 105 km of standard singlemode fibre is demonstrated  相似文献   

15.
WDM systems with unequally spaced channels   总被引:9,自引:0,他引:9  
Crosstalk due to four-wave mixing (FWM) is the dominant nonlinear effect in long-haul multichannel optical communication systems employing dispersion-shifted fiber. A method is discussed to find non-uniform channel separations for which no four-wave mixing product is superimposed on any of the transmitted channels, therefore suppressing FWM crosstalk. The residual crosstalk, due to channel power depletion only, is analytically evaluated for intensity-modulated repeaterless wavelength-division-multiplexed (WDM) systems and compared to experimental results. The theory includes the effect of the channel depletion on the amplitude of each phase-matched FWM wave. The probability of error is evaluated including the statistics of the pattern dependent channel depletion. The BER curve computed for an 8-channel WDM system is found to be in good agreement with experimental results. In the experiment, repeaterless transmission of eight 10 Gb/s WDM channels over 137 km (11 Tb/s-km) of dispersion-shifted fiber was demonstrated and error-free operation was achieved over a wide range of input powers using unequally spaced channels. The same system with equally spaced channels could not achieve a probability of error lower than 10-6. The use of unequal channel spacing allowed fiber input power to be increased by as much as 7 dB, which could be translated into a fivefold increase of the bit rate per channel (and therefore of the system capacity), or to an increase in the system length of about 30 km  相似文献   

16.
This paper presents a fully integrated 10GBase-LX4 Ethernet receiver front-end automatic gain control amplifier realized in a 0.18 μm CMOS process. Based on a very compact and reliable inductorless design, the proposed differential post-amplifier, comprises three main digitally programmable gain stages, a DC offset cancellation network and an automatic gain feedback control loop. Experimental results demonstrate a −3 dB cut-off frequency above 2.3 GHz over a −3 to 33 dB linear-in-dB controlled gain range with a sensitivity of 2.0 mVp-p with a BER of 10−12 at 2.5 Gb/s. For the aforementioned standard, 3.125 Gb/s, an input dynamic range above 50 dB is achieved, from 2.5 mVp-p to 800 mVp-p, indicating a BER of 10−12. The chip core area is 0.3 × 0.3 mm2 and it consumes 58 mW with a single supply voltage of 1.8 V.  相似文献   

17.
This paper examines the effects of coherent and incoherent homodyne crosstalk in wavelength division multiplexed (WDM) ring and bus networks using reconfigurable optical add-drop multiplexers (OADM's). It is widely understood that incoherent homodyne crosstalk causes power penalties at the receivers in these networks. We show that coherent homodyne crosstalk causes a range of possible received powers, and that coherent and incoherent crosstalk together lead to a range of possible power penalties. A Monte Carlo simulation is used to examine the probability distribution of power penalties due to homodyne crosstalk under various conditions. We find that increasing the switch and multiplexer crosstalk within each OADM, and increasing the number of WDM channels, all produce increased probabilities of large power penalties. However, the number of nodes through which a signal is transmitted does not affect the power penalty distribution  相似文献   

18.
Gain transients can severely hamper the upstream network performance in wavelength division multiplexed (WDM) access networks featuring erbium doped fiber amplifiers (EDFAs) or Raman amplification. We experimentally demonstrate for the first time using 10 Gb/s fiber transmission bit error rate measurements how a near-saturated semiconductor optical amplifier (SOA) can be used to control these gain transients. An SOA is shown to reduce the penalty of transients originating in an EDFA from 2.3 dB to 0.2 dB for 10 Gb/s transmission over standard single mode fiber using a 231–1 PRBS pattern. The results suggest that a single SOA integrated within a WDM receiver at the metro node could offer a convenient all-optical solution for upstream transient control in WDM access networks.  相似文献   

19.
We examine the fiber transmission performance of the optical signal whose chirp is controlled by utilizing phase modulation in semiconductor optical amplifier (SOA) with both simulations and experiments. This chirp control technique converts a positive chirp created by electroabsorption (EA) modulator into negative chirp, which reduces the waveform degradation due to the chromatic dispersion in transmission over standard single-mode fiber (SMF). It also provides an optical gain that is sufficient to compensate the insertion loss of the EA modulator. We investigate how the chirp control is affected by the input power to the SOA and the carrier lifetime of the SOA. As the SOA input power increases, the negative chirp becomes large, while the waveform is largely distorted due to gain saturation. However, the waveform distortion at high SOA input powers can be shaped by using a frequency discriminator. The acceleration of the carrier lifetime also reduces the waveform distortion due to gain saturation. We demonstrate that the chirp control technique is effective even for a high bit rate optical signal up to 10 Gb/s, when the carrier lifetime is expedited by optical pumping  相似文献   

20.
Saturated semiconductor optical amplifiers (SOAs) can be used as booster amplifiers for dense wavelength-division-multiplexing (DWDM) return-to-zero differential phase-shift keying (RZ-DPSK) transmitters. By introducing time interleaving (TI), both linear crosstalk induced by WDM components and nonlinear crosstalk induced by SOA nonlinearities are suppressed. Receiver sensitivities for four-channel DWDM RZ-DPSK signals with 100- and 50-GHz channel spacing were improved 2.2 and 4.2 dB, respectively, by applying proper TI between adjacent channels. A 1-dB gain enhancement was also achieved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号