首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
快速凝固Al-Si合金的组织形态及相结构   总被引:5,自引:0,他引:5  
利用单辊旋淬法制备快速凝固共晶和过共晶铝硅合金条带,采用扫描电镜、透射电镜及XRD技术对试样的组织形貌、相结构进行表征.结果表明:快速凝固后组织明显细化,共晶和过共晶组织转变成了亚共晶组织;与平衡态相比,快速凝固有效抑制硅相的形核与生长,初生硅不能析出,α相领先共晶形核生长,形成α相和分布在α相间的羽毛针列状共晶体复合组织.  相似文献   

2.
通过差热分析并结合金相组织观察的方法研究了AZ61镁合金相变温度点和凝固组织的特征,并对凝固组织演变机理做了理论分析。结果表明:AZ61镁合金固液转变温度在587.10~608.43℃之间,共晶转变温度在413℃左右;AZ61镁合金在凝固过程中首先析出α-Mg树枝晶,α-Mg树枝晶间富Al的残余液体发生共晶转变,形成α-Mg+β-Mg17Al12共晶组织。共晶组织中的α-Mg相往往依附初晶α-Mg形核生长,并将β-Mg17Al12相推向α-Mg枝晶的晶界,形成离异共晶组织。  相似文献   

3.
ZA27合金的微观组织   总被引:35,自引:2,他引:35  
用SEM和TEM对金属型铸造并经 18个月自然时效的ZA2 7合金的微观组织进行了观察。结果表明 :ZA2 7合金凝固的初生相为富Al的树枝状α′相 ,随后在α′相周围形成一层富Zn的包晶 β相 ,最后剩余液体发生共晶反应 ,共晶 β优先依附于包晶 β相形核、长大 ,而共晶 η则在包晶 β相间形成一层薄膜 ,在有些区域则形成棒状共晶组织 ;在随后的冷却及时效过程中 ,β发生胞状分解形成规则的共析α η层片组织或不规则的复杂形状组织 ,共析胞以共晶 η相为基形核 ,并向枝晶中心生长 ,使α′相也分解为层片α η组织 ,当其生长被α′中心的连续分解所阻挡时 ,致使其芯部形成细小的α η颗粒组织 ;富Cu的ε相存在于所有 η相中  相似文献   

4.
采用砂型铸造近共晶成分的亚、过共晶镁-铝合金,并对合金液进行水淬快冷。采用OM、SEM、EDS、TEM等分析手段,分析了MgMg17Al12共晶结晶的领先相,观察了共晶组织形貌。结果表明:Mg—Al合金系的共晶领先相为β-Mg17Al12,且为非小平面相。当初生相为α枝晶时,共晶结晶前会在α枝晶周围先形成β相晕圈,共晶β相依附于其上领先生长;当初生相为β枝晶时,共晶β相直接依附于其上领先生长。高铝含量镁合金的凝固过程中,可能会形成一种带有板条状鱼脊特征的树枝状共晶组织,即先析出板条状共晶,然后侧向形成树枝状共晶,组成一种特殊结构的共晶形貌。  相似文献   

5.
半固态镁合金中液相的凝固方式及组织形貌   总被引:5,自引:2,他引:5  
程健杰  袁森  王武孝  熊爱华  蒋百灵 《铸造》2005,54(5):442-445
采用快速液淬方法分析研究了AZ91D镁合金半固态液相的凝固方式和组织形貌,结果表明:镁合金半固态液相的凝固方式与冷却速度所决定的过冷度有重要关系.在液淬快冷的条件下,液相先析出α相,部分依附于初生固相晶粒结晶生长,部分在液相中独立形核生长.较大的过冷度使α相长成"毛刺状"或树枝晶状.共晶凝固按离异生长和共生生长两种方式进行,离异生长形成粗大的晶界β相,共生生长形成层片状组织.初生固相晶粒中形成的小液池,其凝固方式和结晶组织与晶间液相基本相同,但由于液相量少,共晶凝固主要以离异方式进行.  相似文献   

6.
通过OM、SEM和XRD,对触变成形并经5年自然时效的ZA27合金的微观组织进行了观察。结果表明:ZA27合金是由富Al枝晶和枝晶间的共晶组织组成。经触变成形和自然时效后的ZA27合金由球状初生粒子α′相、晶间的二次凝固组织及半固态成形时没有凝固完全的小液池组成。共晶方式主要为离异共晶及其中“蜂窝”状棒状共晶,部分区域出现不规则层片共晶组织。ZA27合金通过随后的冷却和自然时效过程,经过了一系列的相变,β相发生胞状分解,形成规则的共析(α+η)层片组织或是不规则的复杂形状组织,从一些层片区域逐渐向低铝的α′相区域中心生长为粗大的层片组织,当其生长被α′相中心的连续分解所阻挡时,致使其芯部形成细小的(α+η)颗粒组织。  相似文献   

7.
采用热分析方法研究了稀土Er对共晶铝铁合金的变质作用。通过OM、XRD、SEM、EDS以及合金在凝固过程中的特征参数综合分析了稀土Er对共晶铝铁合金的作用机理。结果表明:冷却速率为33℃/s时,共晶铝铁合金的凝固过程为:先发生L→α-Al初转变,然后发生L→Al+Al3Fe和L→Al+Al6Fe共晶转变,添加了稀土Er后,在凝固末期发生L→Al+Al3Er转变而生成铝稀土共晶相。初生的Al3Er可以作为初晶α-Al的非均质形核质点,增加了初晶α-Al的形核率,提高了铝铁合金中初晶α-Al开始形核温度,缩短了共晶转变时间。当Er添加量为0.3wt%时,初晶α-Al平均晶粒尺寸达到了最小值21.7μm。当Er添加量为0.5wt%时,初晶α-Al晶粒尺寸增大,且出现了离异共晶组织。  相似文献   

8.
赵丽敏 《铸造》2012,61(6):617-620
在本研究中使用Zn-xAl合金液对铝合金表面进行热浸镀,重点研究不同Al含量的Zn-xAl合金液在坩埚中凝固的铸锭组织及在铝基体表面凝固的镀层组织中共晶形貌,分析了不同冷却条件下共晶组织的形成机理及影响因素。结果表明,Zn-xAl合金液铸锭由于冷速较低,属近平衡凝固,共晶组织为典型的片层结构;Zn-xAl合金液镀层的凝固由于冷速过快,冷却速度成为共晶结构的决定因素,共晶组织为非规则共晶形貌,α富Al相呈球形、椭球形或短棒状组织。试验中不同冷却条件下,Zn-xAl合金共晶析出时其领先相均为β富Zn相。  相似文献   

9.
通过OM、SEM和XRD对触变成形并经5年自然时效的ZA27合金的微观组织进行了观察。结果表明:经触变成形后的ZA27合金由球状初生粒子α′相、晶间的二次凝固组织及半固态成形时没有凝固完全的小液池组成。共晶方式主要为离异共晶及其中"蜂窝"状棒状共晶,部分区域出现不规则层片共晶。ZA27合金在后期的冷却和自然时效过程中,经过了一系列的相变,β相发生胞状分解,形成规则的共析α+η层片组织或不规则的复杂形状组织,从一些层片区域逐渐向低铝的α′相区域中心生长为粗大的层片组织,当其生长被α′中心的连续分解所阻挡时,在其芯部形成细小的α+η颗粒组织。  相似文献   

10.
Al-Cu-Mg-Ag-Er合金晶界相组成及生长方式   总被引:1,自引:0,他引:1  
研究了Al-4.0Cu-0.45Mg-0.4Ag-0.25Er合金铸态晶界相的组成及其生长规律.结果表明:稀土Er在合金中主要以Al8Cu4Er相的形式存在,Mg和Ag固溶于α-Al.合金铸态组织由α-Al固溶体、Al8Cu4Er相和Al2Cu相组成.Al8Cu4Er相和Al2Cu相共生于α-Al固溶体晶界,形成离异型共晶组织.凝固过程中,Al8Cu4Er相优先依附于先共晶相α-Al形核,并且分别以枝晶生长和平面生长这2种方式有选择的进行生长,形成α-Al、Al8Cu4Er相和Al2Cu相的三元共晶组织.  相似文献   

11.
A crystallographic model is used to predict the nucleation potencies of TiB2 particles during solidification of TiAl-based alloys. Two nucleation scenarios are investigated. In scenario 1, primary TiB2 grows in the melt before formation of the body-centred cubic β phase. In scenario 2, secondary TiB2 precipitates after the first β phase but before formation of the hexagonal close-packed α phase. The model predicts high α and β nucleation potencies of TiB2 in both scenarios. However, pre-existing β grains in scenario 2 are predicted to be preferred α nucleation sites. The experimentally observed β refinement by primary TiB2 agrees with the model predictions. Grain refinement in scenario 2 is attributed to α nucleation on β, which is interleaved with secondary TiB2.  相似文献   

12.
混合元素法激光立体成形Ti-XAl-YV合金的微观组织演化   总被引:1,自引:0,他引:1  
研究了混合元素法激光多层沉积Ti-XAl-YV(X≤11,Y≤10)(质量分数,%,下同)合金的微观组织随Al、V元素含量的演化规律。结果发现:随Al、V含量的增加,Ti-XAl-YV合金原始β晶内α域的尺寸和数量逐渐减小,原始β晶内的显微组织逐渐由魏氏组织转化为α和β编织细密的网篮组织,且α板条的尺寸和长宽比显著减小。结合单道多层激光沉积过程热历史循环曲线的计算、合金相变点温度的计算以及Ti-XAl-YV合金的相图分析,研究了单道多层激光沉积Ti-XAl-YV合金α相的形核和生长条件,揭示了微观相结构演化机理。  相似文献   

13.
在3~70μm/s的生长速度范围内对Ti-46Al-8Nb(摩尔分数,%)合金进行定向凝固实验,研究其微观组织演变和微观偏析形式。在该生长速度范围内,固-液界面表现为规则的枝晶生长,一次枝晶间距随着生长速度的加快而逐渐减小。在定向凝固过程中观察到典型的L+β→α包晶反应,最终得到具有α2/γ层片和B2相的微观组织。在各个晶粒中,层片与β相枝晶初始生长方向呈0°或45°。包晶反应导致严重的成分偏析,在凝固过程中,铝富集在枝晶间,铌富集在枝晶心部。随着α相的形核和生长,铌的偏析程度逐渐增大,从而促进B2相的析出,而富集在枝晶间的铝在包晶反应发生后逐渐变得均匀、一致。  相似文献   

14.
Columnar-to-Equiaxed Transition (CET) of binary Ti–Al alloys and multi-component Ti–48Al–2Cr–2Nb alloys is studied using Bridgman solidification technique. The effect of aluminum concentration and growth rate on CET is determined. It is found in Ti–46Al and Ti–50Al alloy ingots equiaxed grains develop ahead of the moving solid–liquid interface with a growth rate of 500 μm/s; microstructures in Ti–49Al alloy stay columnar dendrites with the same growth rate. CET in Ti–Al alloys are not only influenced by growth rate, but also by the solidification path that is related to alloying composition. CET in Ti–Al alloys is predicted using the dendritic growth model based on the criterion of growth at marginal stability. According to the calculated results and directionally solidified microstructures, values of the nucleation undercooling for α and β phases are given. The growth rates to avoid CET in Ti–48Al–2Cr–2Nb alloy are suggested.  相似文献   

15.
This paper discusses the structural and compositional changes at the nanometer scale associated with the nucleation and growth of α precipitates in the β titanium alloy Ti-5553 (Ti–5Al–5Mo–5 V–3Cr–0.5Fe) with ω precipitates acting as heterogeneous nucleation sites. The microstructural evolution in this alloy, during β-solutionizing, quenching and aging type heat-treatments, has been investigated by combining results from scanning electron microscopy, orientation imaging microscopy, transmission electron microscopy, high-resolution TEM and three-dimensional atom probe (3DAP) tomography. Athermal ω precipitates form in this alloy on quenching from above the β transus temperature. On isothermal annealing at low temperatures, these ω precipitates coarsen to form chemically ordered ω precipitates, accompanied by the nucleation of the stable α phase. Annealing at higher temperatures leads to dissolution of ω and further growth of α precipitates accompanied by clustering of different α variants in self-accommodating morphologies. 3DAP results indicate that annealing at lower temperatures (~350 °C) leads to initial nucleation of α precipitates with a non-equilibrium composition, nearly identical to that of the β matrix. Subsequent aging at higher temperatures (~600 °C) leads to more pronounced partitioning of alloying elements between the two phases. These results indicate that the structural body-centered cubic to hexagonal close-packed transformation and the compositional partitioning of alloying elements occur in sequential steps, resulting in a mixed-mode displacive-diffusional transformation, similar to the bainite transformation in steels.  相似文献   

16.
《Intermetallics》1999,7(11):1247-1253
High temperature phase diagram near the stoichiometric composition of TiAl has been established by the directional solidification and quenching technique. The quenched dendrite morphologies showed that the first solidified phase was the β phase in Ti–44, 46, 48 at% Al alloys and the α phase in Ti–50, 52 at% Al alloys. From the EDS analysis of the quenched dendrite tips and measurement of the temperature gradient directly recorded during directional solidification in Ti–(44–52 at%)Al alloys, the solid-liquid phase equilibria could be determined. The phase transformation temperatures were also confirmed by DTA. The phase equilibria established in this study agreed with the phase diagram that Okamoto proposed, while the β+γ two phase region, which Murray suggested, was not found near the TiAl composition. The lamellar orientation in TiAl alloys has been reported to be controlled in the growth direction in the presence of the primary β phase from a liquid. A composition in which the liquid phase was fully transformed to the β phase was selected, Ti–44 at% Al alloy, and directional solidification was performed at the growth rate of 45 mm/h. It was found that the lamellar orientation was aligned at nearly 0° and 45° to the growth direction. It is thought that the success in controlling the lamellar orientation is due to β solidification of the Ti–44 at% Al alloy at the beginning of liquid/solid transformation.  相似文献   

17.
利用放电等离子烧结技术制备了一种低成本车用钛合金(Ti-4.3Fe-7.1Cr-3Al),研究烧结温度对其晶粒尺寸、孔隙率、显微组织、成分均匀性、相结构及力学性能的影响。结果表明,在1100和1300℃两种烧结温度下,其显微组织基本由针状α相和β基体相组成,其间分布着条状或颗粒状TiC。随着烧结温度的升高,晶粒尺寸逐渐增大,孔隙率逐渐减小,TiC析出密度逐渐增多,针状α相逐渐减少,并且由1100℃的不均匀分布逐渐转变为1300℃的均匀分布。电子探针分析表明,1100℃时成分均匀性差,出现了Cr和Al元素的偏析,而1300℃时基本无偏析。XRD分析和纳米力学探针测量显示,添加的合金元素使β相的晶格参数减小以及细小第二相析出,弹性模量增大。  相似文献   

18.
《Acta Materialia》2007,55(17):5718-5727
Texture changes during recrystallization and the α–β–α phase transformation in two titanium alloys were investigated in situ by time-of-flight neutron diffraction by heating in a vacuum furnace to 950 °C. In commercially pure titanium, a strong texture memory effect is observed. This effect is a direct consequence of an orientation-selective α  β transformation, favoring new orientations produced during nucleation and grain growth. The β–α transformation favors β orientations with minimal misorientations, resulting in a strong final α texture that emphasizes the grain growth component. In Ti–6Al–4V, the texture memory effect is less pronounced. The high-temperature β texture is obtained by growth of pre-existing β nuclei. In a similar way, during cooling, the growth of α domains is controlled by high-temperature α orientations inherited from the β grains with Burgers orientation relation.  相似文献   

19.
Directional solidification (DS) experiments with thermal stabilization (TS) treatments were performed on Ti–46Al–5Nb (at.%) alloys in a Bridgman-type furnace using a quenching technology. Influence of the TS treatment on mushy zone and directional growth afterwards were investigated. The results show that the length of the mushy zone decreases but the β dendrite spacing in directional growth significantly increases with increasing TS time. During the DS process, β dendrite spacing is more homogeneous and its growth direction is more inclined to parallel to the axial direction with increase of the TS time. Al solute concentration in the mushy zone in a steady-state is always lower than that in original as-cast alloys. The mushy zone with the columnar β and α grains is easily produced after TS treatment on the alloys with microstructures of the directional dendrite segregation morphology before DS starting. TS treatment results in the redistribute of solute Al thus changes the phase constituent in the mushy zone. An appropriate TS is necessary to produce the L + β + α region in the mushy zone, which is of great benefit to control DS microstructures of TiAl peritectic alloys.  相似文献   

20.
Samples of Ti–4.3Fe–6.7Mo–1.5Al were isothermally annealed in the temperature range of 730–780 °C for various times to study the β–α transformation. Serial sectioning in conjunction with both optical and EBSD analyses was applied to determine the three-dimensional (3-D) morphologies of primary α phase. The 3-D analysis proved to be essential for characterization of the complex morphologies of α grains and consequently for the identification of growth behavior. It showed that nucleation of α grains takes place at β–β grain boundaries and significant branching takes place after initial growth of α grains along β–β grain boundaries. Some branches grow inside the β grain interior. The branching behavior is shown to interact with β–β grain boundaries, leading to a zig-zag morphology. The presented 3-D analysis of α grains and their influence on β–β grain boundaries clearly show that 2-D observations of the microstructural morphologies are not sufficient to adequately represent the transformation characteristics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号