共查询到17条相似文献,搜索用时 62 毫秒
1.
2.
3.
4.
属性约简是Rough集理论的重要研究内容,基于信息熵的属性约简是一种有效的属性约简方法。在实际应用中,获取的信息系统通常是不完备的。针对这种问题,在容差关系下对个体进行分类时,基于属性子集redu与CAttr(属性全集)-redu之间的内在联系,定义了一种新的知识熵,提出了一种新的应用近似模糊熵的不完备信息系统属性约简算法(newS算法),其时间复杂度是O(|C|2∑mi=1(kpi)2)。最后,在ROSE和UCI data中的6个数据集上进行了实验仿真,结果表明newS算法是可行的,并且在同等约简效果下与其他算法相比具有更高的属性约简效率。 相似文献
5.
属性约简是粗糙集理论研究中最重要的领域之一。经典的不完备决策系统广义决策约简关注决策系统中的所有决策类,而在实际应用中,决策者往往只关注一个或者几个特定决策类。针对以上问题,提出基于多特定类的不完备决策系统广义决策约简理论框架。首先,定义了单特定类的不完备决策系统广义决策约简的相关概念,提出并证明相关定理,构造相应差别矩阵和区分函数。其次,将单特定类的广义决策约简推广到多特定类,提出基于差别矩阵的多特定类的不完备决策系统广义决策约简算法。最后,采用6组UCI数据集进行实验。实验结果表明,相对全部决策类数量,当选定特定类数量较少时,平均约简长度有不同程度的缩短,占用空间有所减小,约简效率有不同程度的提升。 相似文献
6.
应用粗糙模糊度的不完备信息系统属性约简 总被引:1,自引:0,他引:1
粗糙集理论能有效地处理不精确、不一致、不完整等不完全数据信息,可以对数据信息进行分析和推理,发掘隐含知识,揭示潜在规律.属性约简是粗糙集理论的重要研究课题.在现实生活中,由于各种条件限制,信息的不完备现象广泛存在,限制了经典Rough集理论在一些实际问题中的应用.文中引入粗糙模糊度度量,定义了一种新的知识熵.在此基础上,提出了一种基于信息观下粗糙模糊度的不完备信息系统属性约简算法.通过仿真实验说明了该算法的有效性和较好的时间优越性. 相似文献
7.
8.
基于容差关系的不完备决策系统属性约简算法 总被引:3,自引:0,他引:3
给出容差关系下不完备决策系统中属性相对约简的定义,提出一种基于决策属性相对条件属性正域的求取属性约简算法。该算法以相对正域为迭代准则,以所有条件属性为初始约简集合,通过逐步缩减来求取约简,保证了所求取的约简对问题的分类能力不会减弱。同时给出该算法的时间复杂度分析,并举例验证了该算法的有效性和实用性。 相似文献
9.
给出容差关系下不完备决策系统中属性相对约简的定义,提出一种基于决策属性相对条件属性正域的求取属性约简算法。该算法以相对正域为迭代准则,以所有条件属性为初始约简集合,通过逐步缩减来求取约简,保证了所求取的约简对问题的分类能力不会减弱。同时给出该算法的时间复杂度分析,并举例验证了该算法的有效性和实用性。 相似文献
10.
11.
一种新的完全决策表属性约简的高效算法 总被引:2,自引:2,他引:2
属性约简是粗糙集理论的核心问题之一,也是粗糙集有效算法研究的焦点。为获得最简明的规则集,通常希望能找出最小的属性约简集,但得到最优解是NP-hard的问题,通常采取启发式的算法得到近似最优解。文中研究了不完全决策表的属性约简,提出一种衡量不完全决策表属性重要性的标准,依此给出了一种新的进行属性约简启发式算法。对寻找对象的相似类的步骤则在排序和二分查找的基础上提出了一种新的高效的算法,这样就相应地使得属性约简的效率得到提高。此算法较好地解决了不完全决策表的属性约简问题。 相似文献
12.
属性约简是粗糙集理论的核心问题之一,也是粗糙集有效算法研究的焦点.为获得最简明的规则集,通常希望能找出最小的属性约简集,但得到最优解是NP-hard的问题,通常采取启发式的算法得到近似最优解.文中研究了不完全决策表的属性约简,提出一种衡量不完全决策表属性重要性的标准,依此给出了一种新的进行属性约简启发式算法.对寻找对象的相似类的步骤则在排序和二分查找的基础上提出了一种新的高效的算法,这样就相应地使得属性约简的效率得到提高.此算法较好地解决了不完全决策表的属性约简问题. 相似文献
13.
经典Rough集理论是基于完备信息系统的。然而在实际应用中,由于数据存取或数据处理方面的原因,决策表经常是不完备的,即存在缺值。为了处理不完备信息系统,Kryszkiewicz提出了基于容差关系的Rough集模型。在该模型下进行知识约简时,现有的算法一般都采用构造区分矩阵和相应区分函数的方法。该方法虽然可以求得所有约简,然而业己证明这是一个NP-hard问题,因此实践中更为可行的方法是利用启发式搜索算法求出最优或次最优约简。在文中提出属性的重要性定义,并以此作为启发式信息,设计一种完备的知识约简算法。 相似文献
14.
基于模糊粗集的不完备信息表属性约简新算法 总被引:2,自引:0,他引:2
模糊粗糙集结合了粗集和模糊集的优点,是一种有效的数据处理理论,尤其在不完备信息表数据处理中。论文对Krysckiewcz容差关系模型加以改进,充分考虑信息表中属性取值的规律,构造模糊的二元不可分辨关系,运用模糊粗糙集理论,推广属性依赖性度量概念,给出了属性约简算法,并通过一个实例验证了它的有效性,为不完备信息表的数据处理提供了一些解决问题的思路。 相似文献
15.
实际应用中,信息系统的数据常常是动态变化的,当对象增加时,原始的属性约简集不一定有效。针对不完备决策系统对象增加的情况,提出基于条件熵的增量式属性约简算法。首先定义不完备决策系统中的条件熵,然后分析对象增加时条件熵的变化机制以及对约简集的影响,提出增量式属性约简算法,当对象增加时,该算法能够更高效地进行属性约简。最后,实验验证本文算法的有效性和高效性。 相似文献
16.
不完全决策表的一种信息熵属性约简算法 总被引:1,自引:0,他引:1
属性约简是粗糙集理论的核心问题之一,也是粗糙集有效算法研究的焦点。为获得最简明的规则集,通常希望能找出最小的属性约简集,但得到最优解NP-hard的问题,通常采取启发式的算法得到近似最优解。文中研究了不完全决策表的属性约简,提出了对不完全决策表的一种基于信息熵的属性约简算法,并通过例子说明算法的具体过程和验证了算法的可行性。对寻找对象的相似类的步骤则在排序和二分查找的基础上提出了一种高效的算法,这样就相应地提高了属性约简算法的效率。 相似文献