首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 98 毫秒
1.
《光机电信息》2011,(9):79-79
近日,中国科学技术大学化学与材料科学学院陈春华教授研究小组设计制备出具有优异大电流充放电性能的三维多孔钒氧化物锂离子电池正极材料。相关研究成果发表在能源环境领域顶级期刊《能源与环境科学》(Energy & Environmental Science)(2011,4,2854—2857)上。  相似文献   

2.
黄登勇 《电子科技》2014,27(12):90-91
分析超级电容器的制备以及其化学性能,制备出了无定型氧化锰电极,并将制得的氧化锰电极置入电解液中,在一定的电位范围中扫描绘制了循环伏安曲线,另外,将电极在一定电流下放电,分析其可逆性。从测试结果可以看出,这种电极的充放电性能良好,且具有理想的可逆性。  相似文献   

3.
《光机电信息》2011,(4):69-70
中国科学院兰州化学物理研究所固体润滑国家重点实验室在石墨烯(Graphene)基超级电容器电极材料研制方面取得系列进展。  相似文献   

4.
利用间歇通O2的方式,采用射频磁控溅射法在Si3N4衬底上制备V2O5/V/V2O5复合薄膜,研究了不同原位退火条件对薄膜阻值及电阻温度系数(TCR)的影响。结果表明,经过退火处理后的V2O5/V/V2O5复合薄膜方阻值大大降低,电阻-温度曲线呈现良好的线性特性,并具有高TCR值及优良的电学稳定性。利用X射线光电子能谱(XPS)对退火后的V2O5/V/V2O5复合薄膜表面进行V、O元素分析,结果表明,V2O5/V/V2O5复合薄膜各层间的扩散效果显著影响薄膜表面不同价态V离子的含量,低价V离子会随着退火温度的升高及退火时间的延长而增多,薄膜表面对水分子的吸附也随之变强。在实验结果的基础上,利用扩散理论阐述了退火条件对V2O5/V/V2O5复合薄膜电学性能影响的机理。  相似文献   

5.
用sol-gel法制备了水合二氧化钌,进而制备了二氧化钌/活性炭复合电极,并对各种不同配比的复合电极的电化学性能和物理性能进行了实验研究。引入参数Cp,RuO2·xH2O,解释复合电极的电容特性,更好地考察了水合钌氧化物的利用率。结果表明,在二氧化钌中加入适量的活性炭,可以改善电极材料的阻抗特性,但将以降低电容量为代价,当二氧化钌含量为60%(质量分数)时,复合电极的比容量为567F/g,内阻为0.4331Ω,是一种理想的超级电容器电极材料。  相似文献   

6.
分别采用熔盐法和固相反应法制备了 Ni3V2O8多铁材料样品,并利用 X 射线衍射(XRD)、扫描电子显微镜(SEM)、能谱(EDS)、透射电子显微镜(TEM)、高分辨透射电镜(HRTEM)等表征手段分析了所得样品的物相、微观形貌及结构,并研究了其磁学性能。实验结果表明,采用熔盐法和固相反应法制备的 Ni3V2O8样品均为单一物相,呈正交对称型的晶体结构;熔盐法制备所得的样品呈棒状,颗粒直径约为 20 μm,长度约为 100 μm,单个晶粒呈明显的单晶特征;而固相反应法制备的 Ni3V2O8样品呈颗粒状,颗粒尺寸约为 25 μm,分布较均匀。熔盐法制备的 Ni3V2O8具有反铁磁性相变,相变温度在 3.6 K 左右,有效磁矩为 3.34 μB。  相似文献   

7.
8.
以Mn(NO3)2、活性中间相碳微球(活性MCMB)为原料,采用KBrO3氧化法,成功制备了MnO2/活性MCMB新型复合电极材料;以该材料制成电极,并以质量分数为30%的KOH溶液为电解液,组装成扣式电容器。通过XRD和SEM分析了MCMB,活性MCMB及MnO2/活性MCMB的晶相结构和表面形态;采用循环伏安、交流阻抗和恒流充放电法研究了电容器的电容性能。结果表明:以MnO2/活性MCMB复合电极制成的电容器电容性能优良。在0.5A/g电流密度下,其充放电曲线表现出典型的电容行为,初始比容量高达403.5F/g,相应能量密度为12.5Wh/kg;其循环伏安曲线关于零电流线对称,呈现为较规则的矩形;其等效串联电阻约为0.7Ω。  相似文献   

9.
实验研究了多钒酸铵(APV)的微波加热和分解过程,探索了微波功率、APV质量及其水分质量分数等对APV转化成V2O5效率的影响。结果表明,APV是可吸收微波的物质,但其水分、质量及微波功率等因素对平均加热速度有较大影响。采用微波加热法可完成APV的脱水和脱氨过程。  相似文献   

10.
运用Bi2O3-Nb2O5复合掺杂的陶瓷工艺,制备了NiCuZn铁氧体。从其微观结构出发,采用SEM分析手段,研究了Bi2O3-Nb2O5复合掺杂对NiCuZn铁氧体性能的影响。结果表明:适量的Bi2O3-Nb2O5复合掺杂,既有利于细化晶粒、促进晶粒均匀致密,又提高了品质因数Q,其磁性能明显优于单独掺杂。在掺杂总量的质量分数为0.5%、烧结温度为900℃、ζ(Bi2O3:Nb2O5)为7:3时,铁氧体的密度ρ为5.15g/cm3、起始磁导率μi为820.9、Q值可达110.5。  相似文献   

11.
复合掺杂对高磁导率锰锌铁氧体磁性能的影响   总被引:1,自引:1,他引:1  
用复合掺杂的方法制备了高性能的高磁导率MnZn铁氧体材料。研究了Nb2O5-P2O5复合掺杂对MnZn铁氧体微观结构及磁性能的影响。结果表明,适量的Nb2O5-P2O5复合掺杂有利于促进晶粒均匀致密,提高材料的起始磁导率,降低损耗。在配方中,当ζ(Nb2O5∶P2O5)为2∶8时,起始磁导率可达到11 823。  相似文献   

12.
超级电容器用氧化钌及其复合材料的研究进展   总被引:1,自引:2,他引:1  
介绍了超级电容器(亦称电化学电容器)中赝电容器的工作原理和特点。对性能较好的电极材料氧化钌及其复合材料进行分类。综述了近年来其制备和应用进展,并针对氧化钌材料的高成本,提出解决方法和建议。最后对氧化钌材料的发展前景作了展望。  相似文献   

13.
二维V2O5薄膜的制备及其气敏反射光学特性研究   总被引:1,自引:0,他引:1       下载免费PDF全文
张晓东  万爱国 《激光技术》1998,22(5):280-283
介绍了用溶胶凝胶法制备二维V2O5光学薄膜,并研究其在氨气、乙醇、丙酮、丁烷气氛中的气敏反射特性,发现对氨气有极好的选择性,且气敏性在整个可见光波段有良好的单值性,是一种有实用价值的气敏光纤传感材料.  相似文献   

14.
Al2O3、ZrO2、Ta2O5和La2O3薄膜在栅介质、无机EL介质和光学薄膜方面有着重要用途,但对其复合薄膜介电性能方面的研究很少。文章采用电子束共蒸发法制备了厚度分别为414nm和143nm的Al2O3-La2O3(ALO)和ZrO2-Ta2O5(ZTO)复合薄膜,用Sawyer—Tower电路测得介电常数分别为17和34,反映介电损耗的参数△Vy分别为0.013V和0.56V,击穿场强分别为128MV/m和175MV/m,在50MV/m场强下,ALO的正、反向漏电流密度分别为3.1×10-5/cm2和4.1×10-5A/cm2,ZTO的正、反向漏电流密度分别为3.9×10-5/cm2和3.7×10-5A/cm2。另外,实验还与电子束蒸发和反应溅射制备的Al2O3、ZrO2、Ta2O5的介电性能做了比较,结果表明,上述复合薄膜单独作为无机EL绝缘层是不合适的。  相似文献   

15.
V2O5 is a promising cathode material for lithium ion batteries boasting a large energy density due to its high capacity as well as abundant source and low cost. However, the poor chemical diffusion of Li+, low conductivity, and poor cycling stability limit its practical application. Herein, oxygen‐deficient V2O5 nanosheets prepared by hydrogenation at 200 °C with superior lithium storage properties are described. The hydrogenated V2O5 (H‐V2O5) nanosheets deliver an initial discharge capacity as high as 259 mAh g?1 and it remains 55% when the current density is increased 20 times from 0.1 to 2 A g?1. The H‐V2O5 electrode has excellent cycling stability with only 0.05% capacity decay per cycle after stabilization. The effects of oxygen defects mainly at bridging O(II) sites on Li+ diffusion and overall electrochemical lithium storage performance are revealed. The results reveal here a simple and effective strategy to improve the capacity, rate capability, and cycling stability of V2O5 materials which have large potential in energy storage and conversion applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号