共查询到19条相似文献,搜索用时 78 毫秒
1.
小波神经网络预测电价的新改进 总被引:1,自引:0,他引:1
预测市场边际电价对于电力市场的参与者有十分重要的意义.该文首先分析了BP神经网络在电价预测方面的优劣势,然后基于小波分析,即用母小波取代Sigmoid函数建立了小波神经网络的电价预测模型,并用遗传算法优化神经网络的拓扑结构和各权重系数,从而避免BP神经网络的预测电价陷入局部极小值.实际计算表明,改进后的预测模型有效地提... 相似文献
2.
基于多因素小波分析的神经网络短期现货电价预测方法 总被引:2,自引:0,他引:2
一般采用小波分解的电价预测方法是将历史电价分解后分别预测,预测过程中没有引入其他电价影响因素,或者是直接引入未经小波分解的影响因素。提出一种小波分析与神经网络相结合的预测方法,将历史电价和历史负荷都进行小波多分辨率单尺度分解,分解成概貌电价、细节电价和概貌负荷、细节负荷。在此基础上,用历史概貌电价和概貌负荷序列训练BP神经网络,预测出未来的概貌电价;用历史细节电价和细节负荷序列训练BP神经网络,预测出未来的细节电价。将概貌电价和细节电价进行重构,得到最终的预测电价。对美国PJM电力市场的实际电价(LMP)进行预测,验证了该方法的有效性和可行性。 相似文献
3.
基于小波变换的边际电价神经网络预测新模型 总被引:4,自引:0,他引:4
提出了一种基于小波变换和群智能演化的神经网络集成预测新模型,对日前交易边际电价进行预测.首先利用小波变换将历史边际电价序列分解为高频和低频部分,并分别构造学习样本作为神经网络集成的输入;然后将边际电价预测问题转化为神经网络实际输出与预测输出误差最小化问题,其寻优过程采用粗-细二阶段学习算法.在第1阶段,采用粒子群优化算法把神经网络的结构和权重映射成问题空间中的粒子,通过粒子速度和位置更新方程进行粗学习,获得多个相对占优的神经网络结构和初始权重并构成神经网络集成单元;在第2阶段,采用梯度学习算法和交叉验证对神经网络集成单元的权重进行细学习,并以误差最小的神经网络集成单元的输出作为神经网络集成预测模型的输出.美国加州日前交易电力市场边际电价预测算例表明,该预测方法可以获得较高的预测精度,且优于BP神经网络方法和ARIMA预测方法. 相似文献
4.
降低我国风电上网电价的方案探讨 总被引:2,自引:0,他引:2
简要介绍我国风力发电发展现状,从成本和效益2个方面分析风电上网电价高的原因,提出规模化是风电降低成本和商业化的有效途径。文中还介绍国外在降低风电电价方面的有效经验,并结合我国情况进行分析。 相似文献
5.
对未来的光伏上网电价进行合理的预测不仅能为产业投资者提供市场发展信息,也能为国家制订相应的发展计划和激励政策提供依据。本文首先从光伏组件的价格出发,运用学习曲线模型,对历史价格和产量数据进行分阶段拟合,得出组件价格学习率分阶段递减规律,并以此预测出组件价格的发展趋势;然后根据组件价格估算出未来十年的光伏项目建设初始投资成本;最后采用会计成本定价方法计算出光伏发电成本以及上网电价,并与未来的火电成本进行比较。结果表明:在考虑火电外部成本的情况下,资源丰富的西北地区在2012年能够将光伏发电成本降到与火电相竞争的水平,上网价格也能基本降到"一元一度电。" 相似文献
6.
7.
利用多因素小波变换和多变量时间序列模型的日前电价预测 总被引:5,自引:0,他引:5
电力市场中,市场出清电价具有较强的波动性、周期性和随机性,实践证明单一的电价预测模型很难提高预测精度。针对该问题,提出一种基于多因素小波变换和多变量时间序列模型的日前电价预测方法。利用小波变换将历史电价序列和负荷序列分解和重构成概貌电价、细节电价和概貌负荷、细节负荷。用概貌电价和概貌负荷作变量建立多元时间序列模型,预测未来概貌电价;用单变量时间序列模型预测未来细节电价。将概貌电价和细节电价的预测结果求和作为最终的预测电价。采用上述方法对美国加州电力市场日前电价进行预测,并与对比模型进行了详细的比较分析,结果表明该方法能够提供更准确的预测电价。 相似文献
8.
本文通过对风电与火电基本条件比较,及对国外风力发电发展环境和国内风力发电发展现状的研究,指出了风力发电上网电价是决定风力发电事业发展的关键因素。提出了通过发行风力发电《绿色能源》彩票,解决全国风力发电电价价差的解决方案。 相似文献
9.
基于BP神经网络的短期市场出清电价预测 总被引:2,自引:0,他引:2
在电力市场中,短期市场电价预测的准确与否,对发电厂的竞价决策具有关键性的影响。文章提出应用神经网络算法来模拟预测日前市场出清电价,以获取精确的预测结果,该方法可适用于原始数据有限的情况。利用电力系统历史负荷、历史清算电价、系统的旋转备用等影响因素作为分析因子,分析其对未来时段电力市场价格的影响,并对下一交易时段电价进行预测。以美国加利福尼亚州电力市场为背景,采用BP神经网络算法,应用MATLAB软件编程,建立电力市场清算电价短期预测模型。该模型结构为三层神经网络,通过网络的反向传播过程不断修正模型中的神经元连接权值和阈值,充分发挥BP网络局部搜索能力强的优点,实现对未来24小时市场出清电价的有效预测,并针对美国加州实际电力市场价格数据进行训练和预测分析,结果表明该模型具有良好的预测效果。 相似文献
10.
提出了采用小波变换和遗传算法优化神经网络的混合模型对电力负荷进行短期预测。首先通过小波变换,将原始负荷序列分解到不同的尺度上,然后根据不同的子负荷序列的特性分别建立相匹配的神经网络模型,采用遗传算法优化各神经网络模型的初始权值,最后对各分量预测结果进行重构得到最终预测值。采用成都某地区2009年的实际负荷对所提方法进行验证,实验结果表明基于该方法的负荷预测系统具有较高的预测精度。 相似文献
11.
风力发电是新能源发电中技术之一,对促进电力工业调整、减少环境污染、推进技术进步具有重要意义.然而,目前风力发电的大规模使用还存在一定的难度,开展风电场功率预测的研究势在必行,基于小波理论及神经网络的方法,开展相应的研究. 相似文献
12.
考虑了并网风电量对电价影响,并将相关系数作为选取电价影响因素的标准,考虑了历史电价、负荷、并网风电量与负荷的比值等影响电价的因素。分别将负荷与历史清算电价,等效负荷与历史清算电价,负荷、并网风电量与负荷的比值及历史清算电价作为神经网络的输入因子对市场清算电价进行分时段预测。算例采用丹麦电力市场的历史数据,分别对其2010年并网风电量所占比例较大和较小的日期进行预测,验证了选择负荷、并网风电量与负荷的比值及历史清算电价作为预测神经网络的输入变量是恰当的,其预测精度能够满足电力市场实际运行的需要。 相似文献
13.
14.
15.
考虑多重周期性的短期电价预测 总被引:3,自引:1,他引:3
考虑到电价各时段变化以及周末与工作日变化的差异,提出了区分周末的分时段短期电价预测模型。该模型首先将各日中同一时段的电价形成该时段的电价序列,再将各时段电价序列分为工作日电价序列和周末电价序列。这样形成了多个消除了日周期性和星期周期性的子电价序列,分别对各子电价序列进行预测以得到预测日电价。采用基于小波分析的广义回归神经网络对这些子电价序列分别进行提前一天的预测,各子电价序列的预测电价就形成了下一天的预测电价。采用该方法对西班牙电力市场电价进行了长时间的连续预测,并与已有的预测方法进行了详细的比较分析,研究表明该方法能够提供更准确的预测电价。 相似文献
16.
改进小波结合BP网络的风力发电机故障诊断 总被引:2,自引:0,他引:2
针对风力发电机早期故障时定子电流特征量难以提取的问题,提出了单子带重构改进小波变换结合BP神经网络的风力发电机故障诊断新方法。通过对风力发电机的定子电流进行单子带重构改进小波变换,消除了传统小波变换中的频率混叠现象;从小波变换后的子带信号中选取特征域、提取特征量作为BP神经网络的输入;在此基础上,结合BP神经网络的输入输出非线性映射能力,完成对故障的诊断和定位。经过仿真实验证实,该方法准确地实现了对风力发电机故障的诊断。 相似文献
17.
基于小波包分解和改进Elman神经网络的风电场风速和风电功率预测 总被引:1,自引:0,他引:1
准确预测风电场风速和风电功率对做好风电场运行维护、合理安排开停机计划以及确保电力系统的安全稳定运行具有重要意义。提出了基于小波包分解和改进Elman神经网络的新型风电场风速和风电功率预测方法并给出了具体应用步骤。首先利用小波包分解理论对经过初步处理的历史风速数据进行分解处理,根据相关性剔除随机数据,保留最优分解树;随后提出带扰动的PSO训练算法用以提高Elman神经网络的训练速度,并解决PSO算法易陷入局部最优解的问题;最后利用不同结构的Elman神经网络寻找最优分解树不同频段下的风速规律进而获得风速和风电功率预测结果。南方某风电场算例表明该方法具有更高的预测精度,能够正确反映风速和风电功率规律。 相似文献
18.
“两部制电价”在广东省9E级机组上网电价中的应用 总被引:1,自引:0,他引:1
广东省9E级机组对缓解广东省供电紧张和“卡脖子”的问题有着积极的作用,却面临着亏损的困境。为此,结合广东省9E级机组的现状,通过分析和计算,对9E级机组实施“两部制电价”的必要性和可行性进行了研究,并指出实施“两部制电价”应注意的问题。 相似文献
19.
基于小波-神经网络的风电功率短期预测 总被引:1,自引:0,他引:1
根据风速、风电功率变化特点,有效地预测风电功率,可降低电网调度的难度,利用小波多分辨分析法将风速序列信号分解到不同尺度上以反映不同变化频率的风速信号,分解后的风速信号经多层前向神经网络BP(Back Propagation)预测出其对应的风电功率,通过将基于小波-神经网络模型的预测结果与基于BP神经网络模型的预测结果进行比较研究,发现基于小波-神经网络的预测精度更高,效果更好,且预测精度与预测时间长短有关。 相似文献