首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
光电池可以直接将光转化为电能,具有极大的可再生性,既清洁安全,无污染,又不会影响生态环境。从光电池的工作原理出发,通过实验测定了表征光电池基本特性的短路电流,开路电压和填充因子等参数以及外界条件对他们的影响。  相似文献   

2.
赵楠  孙雪萍  李平舟 《信息技术》2012,(10):134-136
光电池可以直接将光转化为电能,具有极大的可再生性,既清洁安全,无污染,又不会影响生态环境。从光电池的工作原理出发,通过实验测定了表征光电池基本特性的短路电流,开路电压和填充因子等参数以及外界条件对他们的影响。  相似文献   

3.
利用Rubrene/C70异质结提高有机太阳能电池的性能   总被引:4,自引:4,他引:0  
用C70、C60作为受体,Rubrene、CuPc作为给体,制备了4种异质结有机太阳能电池(()SCs)。实验结果表明,c70代替Qo作为受体的OSCs短路电流Jsc显著增加;Rubrene代替CuPc作为给体的OSCs的开路电压Voc大幅度提高。制备的Rubrene/G70异质结OSCs的Voc、Jsc填充因子FF和...  相似文献   

4.
为了得到优化的扩散工艺,通过改变扩散时间来改变Ⅱ类单晶硅片电池发射区的掺杂浓度和结深,研究了扩散时间对太阳电池性能的影响。通过太阳电池单片测试仪(XJCM-9)测试电池性能。得到了实验条件下优化的扩散工艺,此工艺既考虑了短路电流,又兼顾到开路电压。最优扩散工艺参数为:扩散温度850℃,主扩时间和再分布时间分别为40 min和15 min。此时电池的开路电压、短路电流密度、填充因子和转换效率分别为657 mV3、3.57 mA/cm2、74.36%和16.4%。优化扩散工艺制备的电池效率较原扩散工艺电池提高了约0.3%。  相似文献   

5.
文章利用太阳能电池基本特性实验仪,研究光照强度对太阳能电池输出特性影响,实验结果表明:太阳能电池的开路电压和短路电流随光照强度变大而增大,光照强度变小,最大输出功率变小,而最佳负载电阻变大。  相似文献   

6.
为了减少太阳电池载流子的背面复合,采用离子束对沉积完SiNx减反射膜后的单面扩散和双面扩散的单晶硅片背面进行刻蚀,研究了刻蚀时间对太阳电池性能的影响.采用标准的太阳电池单片测试仪测试电池性能.发现背面经离子束刻蚀后,单面扩散和双面扩散电池片的并联电阻、开路电压、填充因子和转换效率都有所提高,而串联电阻和短路电流的变化则...  相似文献   

7.
在正面光照和背面光照两种条件下,利用半导体器件仿真软件分析了单元电池宽度对产业化P型双面单晶硅太阳电池电学性能的影响。为进一步提高双面太阳电池光电转换效率,对单元电池宽度进行了优化。仿真结果表明,在正、背面光照条件下,随着单元电池宽度的增大,双面电池短路电流密度均增大;当单元电池宽度较小时,正、背面短路电流密度增大较迅速。随着单元电池宽度的增大,正、背面开路电压均增大,而正、背面填充因子先增大后减小。当正、背面入射光强一定时,存在最优的单元电池宽度,使得双面太阳电池转换效率达到最大值。随着单元电池宽度的增大,正面和背面光电转换效率均先增大后减小,但正、背面光照条件下的最优单元宽度不同。当单元电池宽度一定时,存在最优的正、背面栅电极间距。  相似文献   

8.
本文分析研究基本放大电路输出电阻的计算问题,基本放大电路的微变等效电路是含有受控源的二端口网络,根据不同的拓扑结构,应用开路电压短路电流法或外施电源法求输出电阻.之后,对共射、共集和共基三种组态的基本放大电路的输出电阻进行了分析计算.  相似文献   

9.
太阳能电池产业的现状和发展   总被引:5,自引:0,他引:5  
为了应对能源危机和环境污染,太阳能电池产业以平均年增长率为30%的速度飞速发展。摆在人们面前的课题是如何进一步提高转换效率、扩大生产规模和降低制造成本,使太阳能发电的成本降低到与常规发电相当的水平。介绍了太阳能电池的种类、制造方法、产业瓶颈和发展方向。  相似文献   

10.
介绍了近年来用辉光放电法制备的a-Si:H太阳电池的效率问题,文中讨论了有效光电能量转换的条件;a-Si:H电池的结构,新型的高效率非晶硅太阳电池的改进;非晶硅a-Si:H太阳电池的展望等。  相似文献   

11.
An important property of hybrid layered perovskite is the possibility to reduce its dimensionality to provide wider band gap and better stability. In this work, 2D perovskite of the structure (PEA)2(MA)n–1PbnBr3n+1 has been sensitized, where PEA is phenyl ethyl‐ammonium, MA is methyl‐ammonium, and using only bromide as the halide. The number of the perovskite layers has been varied (n) from n = 1 through n = ∞. Optical and physical characterization verify the layered structure and the increase in the band gap. The photovoltaic performance shows higher open circuit voltage (Voc) for the quasi 2D perovskite (i.e., n = 40, 50, 60) compared to the 3D perovskite. Voc of 1.3 V without hole transport material (HTM) and Voc of 1.46 V using HTM have been demonstrated, with corresponding efficiency of 6.3% and 8.5%, among the highest reported. The lower mobility and transport in the quasi 2D perovskites have been proved effective to gain high Voc with high efficiency, further supported by ab initio calculations and charge extraction measurements. Bromide is the only halide used in these quasi 2D perovskites, as mixing halides have recently revealed instability of the perovskite structure. These quasi 2D materials are promising candidates for use in optoelectronic applications that simultaneously require high voltage and high efficiency.  相似文献   

12.
Recombination via subgap trap states is considered a limiting factor in the development of organometal halide perovskite solar cells. Here, the impact of active layer crystallinity on the accumulated charge and open‐circuit voltage (Voc) in solar cells based on methylammonium lead triiodide (CH3NH3PbI3, MAPI) is demonstrated. It is shown that MAPI crystallinity can be systematically tailored by modulating the stoichiometry of the precursor mix, where small quantities of excess methylammonium iodide (MAI) improve crystallinity, increasing device Voc by ≈200 mV. Using in situ differential charging and transient photovoltage measurements, charge density and charge carrier recombination lifetime are determined under operational conditions. Increased Voc is correlated to improved active layer crystallinity and a reduction in the density of trap states in MAPI. Photoluminescence spectroscopy shows that an increase in trap state density correlates with faster carrier trapping and more nonradiative recombination pathways. Fundamental insights into the origin of Voc in perovskite photovoltaics are provided and it is demonstrated why highly crystalline perovskite films are paramount for high‐performance devices.  相似文献   

13.
One of the main issues that limits the efficiency of kesterite solar cells is the low diffusion and chemical activity of selenium clusters. Here, this work proposes a simple and effective pre-selenization strategy using Na2(Se2S) solution, which enables the direct introduction of hyperactive Se2, Se3, and Se4 into the precursors. The results demonstrate that Se2, Se3, and Se4 promote the formation of the Cu2-xSe liquid phase and enhance the diffusion of elements from different micro-regions. Consequently, the ratios of Cu/(Zn + Sn) and Sn/Zn in different micro-regions of the absorber are controlled within the optimal range, exhibiting reduced fluctuations. The controlled environment suppresses the formation of CuZn and SnZn defects, as well as [2CuZn + SnZn] defect clusters. Finally, a power conversion efficiency (PCE) of 12.86% is achieved, which is the highest PCE for kesterite solar cells made under ambient pressure and with N,N-dimethylformamide solvent.  相似文献   

14.
Cesium‐based inorganic perovskites, such as CsPbI2Br, are promising candidates for photovoltaic applications owing to their exceptional optoelectronic properties and outstanding thermal stability. However, the power conversion efficiency of CsPbI2Br perovskite solar cells (PSCs) is still lower than those of hybrid PSCs and inorganic CsPbI3 PSCs. In this work, passivation and n‐type doping by adding CaCl2 to CsPbI2Br is demonstrated. The crystallinity of the CsPbI2Br perovskite film is enhanced, and the trap density is suppressed after adding CaCl2. In addition, the Fermi level of the CsPbI2Br is changed by the added CaCl2 to show heavy n‐type doping. As a result, the optimized CsPbI2Br PSC shows a highest open circuit voltage of 1.32 V and a record efficiency of 16.79%. Meanwhile, high air stability is demonstrated for a CsPbI2Br PSC with 90% of the initial efficiency remaining after more than 1000 h aging in air.  相似文献   

15.
微晶硅(μc—Si:H)是国际公认的新一代硅基薄膜太阳能电池材料。综述了微晶硅的基本特性,器件质量级材料的表征参量,材料的生长技术,微晶硅在太阳电池中的应用及其发展前景。  相似文献   

16.
Small‐molecule acceptors (SMAs)‐based organic solar cells (OSCs) have exhibited great potential for achieving high power conversion efficiencies (PCEs). Meanwhile, developing asymmetric SMAs to improve photovoltaic performance by modulating energy level distribution and morphology has drawn lots of attention. In this work, based on the high‐performance SMA (Y6), three asymmetric SMAs are developed by substituting the fluorine atoms on the terminal group with chlorine atoms, namely SY1 (two F atoms and one Cl atom), SY2 (two F atoms and two Cl atoms), and SY3 (three Cl atoms). Y6 (four F atoms) and Y6‐4Cl (four Cl atoms) are synthesized as control molecules. As a result, SY1 exhibits the shallowest lowest unoccupied molecular orbital energy level and the best molecular packing among these five acceptors. Consequently, OSCs based on PM6:SY1 yield a champion PCE of 16.83% with an open‐circuit voltage (VOC) of 0.871 V, and a fill factor (FF) of 0.760, which is the best result among the five devices. The highest FF for the PM6:SY1‐based device is mainly ascribed to the most balanced charge transport and optimal morphology. This contribution provides deeper understanding of applying asymmetric molecule design method to further promote PCEs of OSCs.  相似文献   

17.
李正阳 《电子器件》2012,35(3):249-252
准确测量太阳能电池材料少数载流子寿命在电池研究生产中至关重要.利用开路电压衰减(OCVD)技术以ns光脉冲(光脉冲宽度8 ns、频率为10 Hz)作为激发光源,获到了全无机胶体量子点太阳能电池在不同温度(97 K~317 K)条件下的开路电压瞬态响应曲线.电池在低温(97 K~277 K)及高温(277 K~317 K...  相似文献   

18.
The efficiency of polymer solar cells (PSCs) can be essentially enhanced by improving the performance of electron‐acceptor materials, including by increasing the lowest unoccupied molecular orbital (LUMO) level, improving the optical absorption, and tuning the material solubility. Here, a new soluble C70 derivative, dihydronaphthyl‐based C70 bisadduct (NC70BA), is synthesized and explored as acceptor in PSCs. The NC70BA has high LUMO energy level that is 0.2 eV higher than [6,6]‐phenyl‐C61‐butyric acid methyl ester (PCBM), and displays broad light absorption in the visible region. Consequently, the PSC based on the blend of poly(3‐hexylthiophene) (P3HT) and NC70BA shows a high open‐circuit voltage (Voc = 0.83 V) and a high power conversion efficiency (PCE = 5.95%), which are much better than those of the P3HT:PCBM‐based device (Voc = 0.60 V; PCE = 3.74%). Moreover, the amorphous nature of NC70BA effectively suppresses the thermally driven crystallization, leading to high thermal stability of the P3HT:NC70BA‐based solar cell devices. It is observed that the P3HT:NC70BA‐based device retains 80% of its original PCE value against thermal heating at 150 °C over 20 h. The results unambiguously indicate that the NC70BA is a promising acceptor material for practical PSCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号