首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
In steroid-synthesizing cells, like the MA-10 mouse tumor Leydig cells, the peripheral-type benzodiazepine receptor (PBR) is an outer mitochondrial membrane protein involved in the regulation of cholesterol transport from the outer to the inner mitochondrial membrane, the rate-determining step in steroid biosynthesis. Expression of PBR in Escherichia coli DE3 cells, which have no PBR, no cholesterol, and do not make steroids, induced the ability to take up cholesterol in a time-dependent, temperature-sensitive, and energy-independent manner. These cells took up no other steroids tested. Addition of the high affinity PBR ligand PK 11195 to cholesterol-loaded membranes, obtained from cells transfected with PBR, resulted in the release of the uptaken cholesterol. Expression in DE3 cells of mutant PBRs demonstrated that deletions in the cytoplasmic carboxy-terminus dramatically reduced the cholesterol uptake function of PBR, although it retained full capacity to bind PK 11195. Site-directed mutagenesis in the carboxy-terminal region of PBR demonstrated that bacteria expressing the mutant PBR proteins PBR(Y153S) and PBR(R156L) do not accumulate cholesterol, suggesting that amino acids Y153 and R156 are involved in the interaction of the receptor with cholesterol. Considering these results, we postulate the existence of a common cholesterol recognition/interaction amino acid consensus pattern (-L/V-(X)(1-5)-Y-(X)(1-5)-R/K-). Indeed, we found this amino acid consensus pattern in all proteins shown to interact with cholesterol. In conclusion, these data suggest that the expression of PBR confers the ability to take up and release, upon ligand activation, cholesterol. Considering the widespread occurrence of this protein and its tissue and cell specific subcellular localization, these results suggest a more general role of PBR in intracellular cholesterol transport and compartmentalization.  相似文献   

2.
We previously demonstrated that repeated treatment of rats with the standardized extract of Ginkgo biloba leaves, EGb 761, and its bioactive component ginkgolide B (GKB), specifically reduces the ligand binding, and protein and messenger RNA expression of the adrenal mitochondrial peripheral benzodiazepine receptor (PBR), a key element in the regulation of cholesterol transport, resulting in decreased circulating corticosterone levels. Adrenocortical cells were isolated from rats treated with EGb 761 or GKB and cultured for 2 and 12 days. The effect of ACTH on normal and metabolically labeled cells was examined. Corticosterone levels were measured by RIA, and protein synthesis was analyzed by two-dimensional gel electrophoresis. Ex vivo treatment with EGb 761 and GKB resulted, respectively, in 50% and 80% reductions of ACTH-stimulated corticosterone production by adrenocortical cells cultured for 2 days compared with that by cells isolated from saline-treated rats. Two-dimensional gel electrophoresis analysis revealed that in cells from both control and drug-treated animals, ACTH induced the synthesis, at the same level, of a 29-kDa and pI 6.4-6.7 protein identified as the adrenal steroidogenic acute regulatory protein (StAR). In addition, treatment with EGb 761 and GKB specifically altered the synthesis of seven proteins, including inhibition of synthesis of a 17-kDa, identified as PBR. After 12 days in culture, ACTH-stimulated adrenocortical cell steroid synthesis was maintained, and it was identical among the cells isolated from animals treated with GKB or saline. Under the same conditions, the expression of PBR was recovered, whereas no effect of ACTH on the 29-kDa and 6.4-6.7 pI protein (StAR) or other protein synthesis could be seen. A comparative analysis of the effects of GKB and EGb 761 on adrenocortical steroidogenesis and protein synthesis identified, in addition to the 17-kDa PBR, target proteins of 32 kDa (pI 6.7) and 40 kDa (pI 5.7-6.0) as potential mediators of the effect of EGb 761 and GKB on ACTH-stimulated glucocorticoid synthesis. In conclusion, these results 1) validate and extend our previous in vivo findings on the effect of EGb 761 and GKB on ACTH-stimulated adrenocortical steroidogenesis, 2) demonstrate the specificity and reversibility of EGb 761 and GKB treatment, 3) question the role of the 29-kDa, 6.4-6.7 pI protein (mature StAR) as the sole mediator of ACTH-stimulated steroid production, and 4) demonstrate the obligatory role of PBR in hormone-regulated steroidogenesis.  相似文献   

3.
It has been proposed that the steroidogenic acute regulatory (StAR) protein controls hormone-stimulated steroid production by mediating cholesterol transfer to the mitochondrial inner membrane. This study was conducted to determine the effect of wild-type StAR and several modified forms of StAR on intramitochondrial cholesterol transfer. Forty-seven N-terminal or 28 C-terminal amino acids of the StAR protein were removed, and COS-1 cells were transfected with pCMV vector only, wild-type StAR, N-47, or the C-28 constructs. Lysates from the transfected COS-1 cells were then incubated with mitochondria from MA-10 mouse Leydig tumor cells that were preloaded with [3H]cholesterol. After incubation, mitochondria were collected and fractionated on sucrose gradients into outer membranes, inner membranes, and membrane contact sites, and [3H]cholesterol content was determined in each membrane fraction. Incubation of MA-10 mitochondria with wild-type StAR containing cell lysate resulted in a significant 34.9% increase in [3H]cholesterol content in contact sites and a significant 32.8% increase in inner mitochondrial membranes. Incubations with cell lysate containing N-47 StAR protein also resulted in a 16.4% increase in [3H]cholesterol in contact sites and a significant 26.1% increase in the inner membrane fraction. In contrast, incubation with the C-28 StAR protein had no effect on cholesterol transfer. The cholesterol-transferring activity of the N-47 truncation, in contrast to that of the C-28 mutant, was corroborated when COS-1 cells were cotransfected with F2 vector (containing cytochrome P450 side-chain cleavage enzyme, ferridoxin, and ferridoxin reductase) and either pCMV empty vector or the complementary DNAs of wild-type StAR, N-47 StAR, or C-28 StAR. Pregnenolone production was significantly increased in both wild-type and N-47-transfected cells, whereas that in C-28-transfected cells was similar to the control value. Finally, immunolocalization studies with confocal image and electron microscopy were performed to determine the cellular location of StAR and its truncated forms in transfected COS-1 cells. The results showed that wild-type and most of the C-28 StAR protein were imported into the mitochondria, whereas most of N-47 protein remained in the cytosol. These studies demonstrate a direct effect of StAR protein on cholesterol transfer to the inner mitochondrial membrane, that StAR need not enter the mitochondria to produce this transfer, and the importance of the C-terminus of StAR in this process.  相似文献   

4.
In various steroidogenic cell models, mitochondrial preparations and submitochondrial fractions, the expression of the mitochondrial 18 kDa peripheral-type benzodiazepine receptor (PBR) protein confers the ability to take up and release, upon ligand activation, cholesterol. Thus, cholesterol becomes available to P450scc on the inner mitochondrial membrane. These in vitro studies were validated by in vivo experiments. Treatment of rats with ginkgolide B (GKB), specifically reduced the ligand binding capacity, protein, and mRNA expression of the adrenocortical PBR and circulating glucocorticoid levels. Treatment with GKB also resulted in inhibition of PBR protein synthesis and corticosterone production by isolated adrenocortical cells in response to ACTH. The ontogeny of both PBR binding capacity and protein directly paralleled that of ACTH-inducible steroidogenesis in rat adrenal cells and in rats injected with ACTH. In addition, the previously described suppression of luteal progesterone synthesis in the pregnant rat by continuous in vivo administration of a gonadotropin-releasing hormone agonist may be due to decreased luteal PBR ligand binding and mRNA. These results suggest that (i) PBR is an absolute prerequisite for adrenocortical and luteal steroidogenesis, (ii) regulation of adrenal PBR expression may be used as a tool to control circulating glucocorticoid levels and (iii) the stress hypo-responsive period of neonatal rats may result from decreased adrenal cortical PBR expression.  相似文献   

5.
We examined the topography of the MA-10 Leydig tumor cell mitochondrial peripheral-type benzodiazepine receptor (PBR). In previous studies, the 18 kDa PBR was found to be functionally associated with the voltage-dependent anion channel, located in the junctions between outer and inner membranes. Transmission electron (TEM) and atomic force microscopy (AFM) of immunogold labeled PBR on Leydig cell mitochondrial preparations showed that the 18 kDa PBR protein is organized in clusters of 4-6 molecules. Addition of hCG to Leydig cells induces a rapid, within 30 sec, increase in PBR ligand binding and morphological changes, namely redistribution of PBR molecules in large clusters (>7 particles). These hCG-induced changes were inhibited by a cAMP-dependent protein kinase inhibitor and by the benzodiazepine flunitrazepam. AFM further demonstrated the rapid reorganization of the mitochondrial membrane, where the formation of contacts between the outer and the inner mitochondrial membrane may facilitate cholesterol transfer.  相似文献   

6.
The Steroidogenic Acute Regulatory (StAR) protein has been put forth as the rapidly synthesized, cycloheximide-sensitive protein that is required for the transport of cholesterol to the inner mitochondrial membrane and the P450scc enzyme and thereby acutely regulates steroidogenesis in steroidogenic tissues. In this study, several of the factors that may be required for StAR activity were examined using an in vitro system. Lysates from StAR-transfected COS-1 cells were added to mitochondria isolated from MA-10 Leydig tumor cells. Results obtained demonstrated that StAR-containing cell lysate increased steroidogenesis in isolated mitochondria, but failed to do so in the presence of m-CCCP, apyrase, or AMP-PNP, suggesting that StAR function requires ATP hydrolysis as well as an electrochemical gradient for maximal steroidogenic activity.  相似文献   

7.
Peripheral-type benzodiazepine (BZ) receptors (PBRs) have been identified in various peripheral tissues as well as in glial cells in in the brain. PBRs are located mainly on the outer mitochondrial membrane and bind with high affinity the BZ Ro 5-4864 (4'-cholorodiazepam) and the non-BZ PK 11195 (an isoquinoline carboxamide derivative), but bind with very low affinity the BZ clonazepam. PBRs have been cloned from various species. PBRs are multimeric receptors composed of the 18-kDa binding site for isoquinolines, the 32-kDa voltage-dependent anion channel, and the 30-kDa adenine nucleotide carrier (which binds BZs). The expression of PBRs is especially high in steroidogenic organs. Steroid administration affects PBR density, whereas depletion of hormones by hypophysectomy in female rats, or castration (surgical or chemical) in male rats, decreases PBR density in endocrine organs, which can be elevated to normal values after administration of the appropriate hormone. PBRs are probably involved in several functions, including cell proliferation, respiration, and steroidogenesis. It has been suggested that PBRs are involved in the translocation of cholesterol from the outer to the inner membrane of the mitochondria and have an effect on the biosynthesis of steroids.  相似文献   

8.
Interferon-gamma (IFNgamma) is an immunomodulating cytokine that has profound effects on reproductive function. IFNgamma inhibits steroidogenesis both in vivo and in vitro. The mechanism by which IFNgamma inhibits Leydig cell steroidogenesis remains unclear. In the present study, we evaluated the effect of IFNgamma on the expression and regulation of the steroidogenic acute regulatory protein (StAR) gene in primary cultures of rat Leydig cells. StAR facilitates the efficient production of steroid hormone by regulating the translocation of cholesterol from the outer to the inner mitochondrial membrane, the site of the cytochrome P450 side-chain cleavage (P450scc) enzyme system that converts cholesterol to pregnenolone. IFNgamma inhibited hCG-induced StAR messenger RNA (mRNA) levels in a dose-dependent manner. The addition of IFNgamma in a concentration of 500 U/ml decreased hCG-induced 3.8- and 1.7-kilobase StAR mRNA by 78% and 70%, respectively. IFNgamma also reduced hCG-stimulated P450scc mRNA levels by 69%. The inhibitory effects of IFNgamma on StAR mRNA levels were confirmed by ribonuclease protection assay. As early as 12 h after the addition of IFNgamma, hCG-induced StAR mRNA levels decreased by more than 44%. To evaluate the effects of IFNgamma on StAR protein levels, Western blot analyses were performed. hCG in a concentration of 10 ng/ml increased StAR protein by 5.6-fold. Treatment of Leydig cells with IFNgamma (500 U/ml) decreased hCG-induced StAR protein by 44%. In contrast, interleukin-1 and murine tumor necrosis factor-alpha reduced hCG-induced P450scc mRNA expression without inhibiting StAR mRNA or protein levels. In conclusion, IFNgamma inhibits Leydig cell steroidogenesis by down-regulating StAR gene expression and protein production.  相似文献   

9.
10.
Steroidogenic acute regulatory protein (StAR), a 30-kDa protein involved in the transport of cholesterol to inner mitochondrial membrane during stimulation of steroid hormone biosynthesis, has recently been cloned from human adrenals and MA-10 mouse Leydig tumor cells. We examined the regulation of StAR mRNA accumulation upon induction of steroidogenesis in immortalized rat granulosa cells. Granulosa cells were transfected with SV40 DNA alone (POGS5); with SV40 DNA and Ha-ras oncogene (POGRS1); with SV40 DNA, Ha-ras oncogene and LH/CG receptor (GLHR15) or with FSH receptor (GFSHR17) or with the beta 2-adrenergic receptor (G beta 2AR13) expression plasmids. Cells were cultured to confluency and then stimulated for 24 h with oFSH (4 nM), hCG (2.4 nM), isoproterenol (10 microM) or forskolin (50 microM). By quantitative RT-PCR, StAR mRNA was undetectable in non-steroidogenic cells (transfected with SV40 DNA alone, POGS5) either in the presence or in the absence of forskolin. In contrast, variable amount of the message was detected in all steroidogenic cell lines cotransfected with SV40 DNA and Ha-ras. Moreover, an increase in the StAR mRNA expression was evident in all steroidogenic cells upon stimulation with their respective agonists, concomitantly with enhanced progesterone production. The RT-PCR product was sequenced and the 379 base pairs of rat StAR were found to be 93% and 86% identical to mouse and human cDNA, respectively. The deduced 126 amino acid sequence was 95%, 88% and 88% identical to the mouse, human and bovine deduced protein sequences. We conclude that StAR message is expressed only in the steroidogenic rat granulosa cells and can be upregulated by FSH, hCG, isoproterenol and forskolin in the appropriate cell lines. In addition, we find that the rat StAR cDNA exhibit a high degree of homology with the mouse and human sequences.  相似文献   

11.
The synthesis of heat shock proteins (HSPs) rapidly increases in cells under a broad range of stress conditions in addition to heat shock. Previous studies have shown that the induction of HSPs severely impairs the ability of steroidogenic cells to synthesize steroids in response to acute stimulation. De novo synthesis of the steroidogenic acute regulatory (StAR) protein has been shown to be indispensable for acute steroid hormone biosynthesis; however, the effect of HSP induction on the synthesis of the StAR protein has not yet been studied. In the present study we investigated whether HSP induction might influence the steroidogenic activity of MA-10 mouse Leydig tumor cells, and whether this effect may involve the synthesis of StAR protein. MA-10 cells exposed to 45 C for 10 min and allowed to recover for 2 h at 37 C displayed a 6-fold increase in HSP-70 at 3 h postrecovery and a 20-fold increase in this protein at 6 h postrecovery. This heat shock regimen also acutely inhibited both progesterone production and StAR protein synthesis in MA-10 cells in response to LH and cAMP analog stimulation. The activity and quantity of cytochrome P450 side-chain cleavage and 3beta-hydroxysteroid dehydrogenase were not affected by this heat shock treatment, indicating that the loss of steroidogenic capacity was not a result of inhibition of the enzymes involved in the conversion of cholesterol to progesterone. The results suggest that the previously observed antisteroidogenic effects of heat shock treatment may be due mainly to the acute inhibition of StAR protein synthesis.  相似文献   

12.
Steroidogenic acute regulatory protein (StAR) facilitates delivery of cholesterol to the inner mitochondrial membranes. StAR is imported into mitochondria and processed to a mature form by cleavage of the N-terminal mitochondrial targeting sequence. We produced His-tagged (His-tag StAR) constructs lacking the N-terminal 62 amino acids that encode the mitochondrial targeting sequence and examined their steroidogenic activity in intact cells and on isolated mitochondria. His-tag StAR proteins stimulated pregnenolone synthesis to the same extent as wild-type StAR when expressed in COS-1 cells transfected with the cholesterol side-chain cleavage system. His-tag StAR was diffusely distributed in the cytoplasm of transfected COS-1 cells, whereas wild-type StAR was localized to mitochondria. There was no evidence at the light or electron microscope levels for selective localization of His-tag StAR protein to mitochondrial membranes. We established an assay system using mitochondria isolated from bovine corpora lutea and purified recombinant His-tag StAR proteins expressed in E. coli. Recombinant His-tag StAR stimulated pregnenolone production in a dose- and time-dependent manner, functioning at nanomolar concentrations. A point mutant of StAR (A218V) that causes lipoid congenital adrenal hyperplasia was incorporated into the His-tag protein. This mutant was steroidogenically inactive in COS-1 cells and on isolated mitochondria. Our observations conclusively document that StAR acts on the outside of mitochondria, independent of mitochondrial import.  相似文献   

13.
Wilson's disease (WND) is an inherited disorder of copper homeostasis characterized by abnormal accumulation of copper in several tissues, particularly in the liver, brain, and kidney. The disease-associated gene encodes a copper-transporting P-type ATPase, the WND protein, the subcellular location of which could be regulated by copper. We demonstrate that the WND protein is present in cells in two forms, the 160-kDa and the 140-kDa products. The 160-kDa product was earlier shown to be targeted to trans-Golgi network. The 140-kDa product identified herein is located in mitochondria as evidenced by the immunofluorescent staining of HepG2 cells with specific mitochondria markers and polyclonal antibody directed against the C terminus of the WND molecule. The mitochondrial location for the 140-kDa WND product was confirmed by membrane fractionation and by analysis of purified human mitochondria. The antibody raised against a repetitive sequence in the N-terminal portion of the WND molecule detects an additional 16-kDa protein, suggesting that the 140-kDa product was formed after proteolytic cleavage of the full-length WND protein at the N terminus. Thus, the WND protein is a P-type ATPase with an unusual subcellular localization. The mitochondria targeting of the WND protein suggests its important role for copper-dependent processes taking place in this organelle.  相似文献   

14.
Steroidogenic acute regulatory protein (StAR) plays a critical role in steroidogenesis by enhancing the delivery of substrate cholesterol from the outer mitochondrial membrane to the cholesterol side chain cleavage enzyme system on the inner membrane. A recombinant StAR protein lacking the first N-terminal 62 amino acid residues that includes the mitochondrial targeting sequence was shown to stimulate the transfer of cholesterol and beta-sitosterol from liposomes to heat-treated mitochondria in a dose-, time-, and temperature-dependent manner. A recombinant mutant StAR protein that cannot stimulate steroidogenesis by isolated mitochondria did not promote sterol transfer. Unlike the more promiscuous lipid transfer protein, sterol carrier protein 2 (SCP2), StAR did not stimulate phosphatidylcholine transfer in our assay system. The recombinant StAR protein increased cholesterol transfer to heat-treated microsomes as well as to heat- and trypsin-treated mitochondria. These observations demonstrate that StAR has sterol transfer activity, which may reflect an ability to enhance desorption of cholesterol from sterol-rich donor membranes. We suggest that the ability of StAR to promote sterol transfer explains its steroidogenic activity.  相似文献   

15.
The diazepam-binding inhibitor (DBI) is a 10-kDa highly evolutionarily conserved multifunctional protein. In mammals, one of DBI's functions is in the activation of steroid hormone biosynthesis via binding to a specific outer mitochondrial membrane receptor (benzodiazepine receptor, BZD) and promoting cholesterol transport to the inner membrane. In this work, a multitiered approach was utilized to study the role of this receptor-like activity in ecdysteroidogenesis by larval insect prothoracic glands (PGs). First, both DBI protein and messenger RNA (mRNA) levels were correlated with peak PG ecdysteroid production. In vitro ecdysteroid production was stimulated by the diazepam analogue FGIN 1-27 and inhibited anti-DBI antibodies. The DBI protein was found distributed throughout PG cells, including regions of dense mitochondria, supposed subcellular sites of ecdysteroid synthesis. Finally, a potential mitochondrial BZD receptor in PG cells was demonstrated by photoaffinity labeling. These results suggest an important role for the insect DBI in the stimulation of steroidogenesis by prothoracic glands and indicate that a pathway for cholesterol mobilization leading to the production of steroid hormones appears to be conserved between arthropods and mammals.  相似文献   

16.
Although the precise mechanism whereby cholesterol is transported across the outer mitochondrial membrane is uncertain, a multimeric receptor complex termed the peripheral-type benzodiazepine receptor (PBR) appears essential for this process. We therefore predicted that adrenal cells at different developmental stages would express PBR coincidentally with the advent of steroidogenesis. Adrenals of neonatal rats demonstrate greatly reduced sensitivity to ACTH that gradually increases after the first 2 weeks of life. Thus, neonates have lower circulating corticosterone levels following exposure to stress. We examined mitochondrial PBR ligand binding activity, immunoreactive (ir) PBR content, and adrenal sensitivity to ACTH in vivo and in vitro. Ontogeny of both mitochondrial PBR ligand binding capacity and irPBR directly paralleled that of ACTH-inducible steroidogenesis in isolated rat adrenal cells and in rats injected with ACTH. In addition, neonatal PBR had approximately 2-fold higher affinity for PK11195, a synthetic ligand that binds with high affinity to PBR. No correlation was observed during neonatal life between ir-steroidogenic acute regulatory (StAR) protein content and steroidogenesis. These results are consistent with the hypothesis that PBR is an absolute prerequisite for adrenocortical steroidogenesis, and suggest that the stress hyporesponsive period of neonatal rats may result from decreased PBR expression. In addition, the higher affinity of neonatal PBR and the relatively high basal expression of StAR protein in neonatal adrenals may partly explain the high constitutive steroidogenesis characteristic of neonatal rat adrenal cells.  相似文献   

17.
18.
Rat ovarian genes induced by the treatment of immature rats with pregnant mare serum gonadotropin (PMSG) were isolated by a subtraction cloning method. Amongst them was obtained a probable rat homologue of steroidogenic acute regulatory protein (StAR), which has been recently identified as a protein that is an acute regulator of the rate limiting transfer of cholesterol from the outer to the inner mitochondrial membrane. Structure of rat StAR was determined by nucleotide sequence analysis. Northern blot analysis revealed that StAR mRNA levels were rapidly and strongly increased by PMSG/hCG but not by FSH. In situ hybridization revealed that the expression of StAR mRNA was strongly induced by PMSG in theca interna cells as well as in corpora lutea. These findings indicate that expression of StAR mRNA is restricted to and induced in the ovarian steroidogenic cell types where cholesterol is used as a substrate for synthesis of steroid hormones.  相似文献   

19.
In adrenal glomerulosa cells, angiotensin II (Ang II) and potassium stimulate aldosterone synthesis through activation of the calcium messenger system. The rate-limiting step in steroidogenesis is the transfer of cholesterol to the inner mitochondrial membrane. This transfer is believed to depend upon the presence of the steroidogenic acute regulatory (StAR) protein. The aim of this study was 1) to examine the effect of changes in cytosolic free calcium concentration and of Ang II on intramitochondrial cholesterol and 2) to study the distribution of StAR protein in submitochondrial fractions during activation by Ca2+ and Ang II. To this end, freshly prepared bovine zona glomerulosa cells were submitted to a high cytosolic Ca2+ clamp (600 nM) or stimulated with Ang II (10 nM) for 2 h. Mitochondria were isolated and subfractionated into outer membranes, inner membranes (IM), and contact sites (CS). Stimulation of intact cells with Ca2+ or Ang II led to a marked, cycloheximide-sensitive increase in cholesterol in CS (to 143 +/- 3. 2 and 151.1 +/- 18.1% of controls, respectively) and in IM (to 119 +/- 5.1 and 124.5 +/- 6.5% of controls, respectively). Western blot analysis revealed a cycloheximide-sensitive increase in StAR protein in mitochondrial extracts of Ca2+-clamped glomerulosa cells (to 159 +/- 23% of controls). In submitochondrial fractions, there was a selective accumulation of StAR protein in IM following stimulation with Ca2+ (228 +/- 50%). Similarly, Ang II increased StAR protein in IM, and this effect was prevented by cycloheximide. In contrast, neither Ca2+ nor Ang II had any effect on the submitochondrial distribution of cytochrome P450scc and 3beta-hydroxysteroid dehydrogenase isomerase. The intramitochondrial presence of the latter enzyme was further confirmed by immunogold staining in rat adrenal fasciculata cells and by immunoblot analysis in MA-10 mouse testicular Leydig cells. These findings demonstrate that under acute stimulation with Ca2+-mobilizing agents, newly synthesized StAR protein accumulates in IM after transiting through CS. Moreover, our results suggest that the import of StAR protein into IM may be associated with cholesterol transfer, thus promoting precursor supply to the two first enzymes of the steroidogenic cascade within the mitochondria and thereby activating mineralocorticoid synthesis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号