首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 72 毫秒
1.
基于部件的级联线性判别分析人脸识别   总被引:1,自引:0,他引:1  
文章提出一种基于人脸部件表示的级联线性判别分析人脸识别方法。该方法将人脸图像划分为具有交叠区域的多个部件,对每个部件应用线性判别分析以寻找该部件的判别方向,然后对所有部件应用线性判别分析以寻找总体最优判别方向。以从该级联线性判别分析提取的特征作为人脸描述。在FERET人脸库上的人脸识别和人脸确认的实验结果表明,该方法优于传统的基于全局图像的Fisherface方法。  相似文献   

2.
基于线性判别分析的特征选择   总被引:2,自引:0,他引:2  
提出一种新颖的基于特征抽取的特征选择方法,将特征选择问题建模为在子空间中的搜索问题,采用线形判别分析(LDA)的投影思想,对LDA施加一定的限制将其转换为对子空间的搜索优化问题,从而通过解LDA的优化问题得到特征选择的解,进一步把特征选择问题推导简化为对特征的评分和排序过程.通过在UCI机器学习库和Reuters-21578文本数据集上的实验,验证了该方法以较少的特征获得了比全部特征更好的分类结果.  相似文献   

3.
提出了一种新的人脸识别算法。该算法采用Gabor小波和一种新颖的方式来提取人脸特征,利用局部线性嵌入(Locally Linear Embedding,LLE)算法来实现数据的非线性降维处理,最后训练基于欧式距离的最近邻分类器进行分类判决。在ORL人脸库中与PCA方法、Gabor小波+PCA方法和直接的LLE算法进行了实验比较,实验结果表明,提出的Gabor小波+LLE的方法具有更优的性能。  相似文献   

4.
Gabor特征判别分析人脸识别方法的误配准鲁棒性分析   总被引:1,自引:0,他引:1  
人脸识别领域中,Gabor特征人脸表示方法因其在应用中获得的高首选识别率而被认为是一种理想的人脸特征表示方法。文章用一种全新的量化评价方法,结合配准精度和识别率,从误配准鲁棒性角度评价Gabor特征在人脸识别中的优越性。实验表明,和图像灰度信息特征相比,Gabor特征不仅在精确配准时具有高识别率,而且对由于人脸特征定位不精确而导致的图像变化的鲁棒性也更强。  相似文献   

5.
基于Gabor滤波器的快速人脸识别算法   总被引:1,自引:0,他引:1  
孔锐  韩佶轩 《计算机应用》2012,32(4):1130-1132
针对传统人脸识别方法中所提取特征维数高、计算量大等缺点,提出一种新的正面人脸识别算法。新算法融合了半边人脸识别方法、Gabor滤波器、基于互信息判据的Gabor特征筛选来进行人脸识别。新算法将人脸图像分为左右两个部分,计算并比较人脸图像左右半边脸的熵,选取熵值较大的半边人脸图像进行Gabor特征提取。利用二值分类器判别单个Gabor特征的分类能力,选取分类能力较强的特征(最具判决力的特征)。再利用互信息判据对Gabor特征进行第二次筛选,以减小特征之间的冗余度。最后利用最近邻判别器来进行人脸识别。实验结果表明,新算法的识别率优于传统半边脸识别方法,识别速度也优于传统的利用Gabor滤波器进行特征提取的方法。  相似文献   

6.
为了解决传统Gabor滤波器组在人脸识别过程中特征提取时间长、计算量大的问题,从不同方向、不同尺度以及全局角度按照能量大小构建了3种不同的局部Gabor滤波器组用来提取人脸特征。首先,分析数据库中部分图像Gabor变换后的图像能量,从不同角度选出能量较大的图像构建对应的局部Gabor滤波器组; 其次,根据所选滤波器组提取局部Gabor特征; 然后,采用线性判别分析(LDA)法进一步提取Fisher特征; 最后,利用最近邻法识别人脸图像。基于ORL人脸库和YALE人脸库的实验结果表明提出的人脸识别方法降低了人脸图像的特征维数,缩短了特征提取的时间,有效地提高了人脸识别率。  相似文献   

7.
针对基于稀疏表示分类方法的训练样本于与类别标签信息提取不足,特别是在训练样本和待测样本都受到噪声污染的情况下将会明显下降及算法复杂度较高的问题,提出以Gabor特征以及加权协同为基础的人脸识别算法;最初需要对人脸图像内所包含的各个尺度以及方向的Gabor特征完成提取,在稀疏表示中引入Gabor特征,将降维后的Gabor特征矩阵作为超完备字典,再用稀疏表示增强加权协同表示得到该字典下的的稀疏表示系数,然后利用增强系数与训练样本的标签矩阵完成对测试样本进行分类识别,从而得到Gabor特征以及加权的协同表示分类方法,在Yale人脸数据库、Extended Yale B和AR人脸数据库上以及在FERET人脸数据库对人脸姿态变化的实验表明新算法具有更好的识别率和较短的计算时间.  相似文献   

8.
为了进一步增强人脸识别系统的实用性,提高人脸识别率,提出了一种新的融合Gabor小波特征和Gist特征的人脸特征提取方法。对一幅人脸图像提取其多个尺度和方向的Gabor特征图,再对这些Gabor特征图进行处理,分别提取其Gist特征,接着再把所有Gabor特征图的Gist特征级联起来作为一人脸图像的特征向量,经过PCA方法降维处理,最后输入到支持向量机里面训练识别。通过在ORL和FERET人脸库中进行实验检测,结果表明与传统的PCA-SVM方法和Gabor特征提取方法相比,给出的方法可以大幅度提高人脸识别率。  相似文献   

9.
刘靖  周激流 《计算机应用》2005,25(9):2131-2133
研究了基于Gabor特征量和核函数判决方法的人脸识别方法,即首先利用Gabor滤波器组对输入样本进行处理,获得Gabor特征量;然后利用核函数判决方法实现人脸识别。Gabor滤波器组通过提取具有空间频率、空间位置和取向选择性的特征,较好克服了实际中由于表情和光照不同带来的变化;而核函数判决分析方法具有提取输入样本空间的非线性最佳鉴别特征的优点。实验仿真表明了该方法的有效性。  相似文献   

10.
针对Gabor特征维数高难题,提高光照人脸的识别性能,提出一种基于Gabor特征融合和最小二支持向量机的人脸识别算法(Gabor-LSSVM)。首先采用Gabor滤波器提取人脸图像的多尺度和多方向特征,并将相同尺度不同方向的特征融合,初步降低特征维数;然后采用核主成分分析对融合特征进行选择,进一步降低特征维数;最后采用最小支持向量机建立分类器对人脸进行识别,并采用Yale B和PIE人脸库进行仿真测试。结果表明Gabor-LSSVM的人脸识别正确率和识别效率都得到了提高。  相似文献   

11.
一种基于特征融合的人脸识别新方法   总被引:2,自引:0,他引:2  
提出了一种基于特征融合的人脸识别新方法。首先采用两种不同的K-L变换分别降低原始图像空间的维数,避开人脸识别小样本集的局限,然后利用复向量将同一样本的两组特征向量合并在一起,通过运用具有统计不相关性的复线性鉴别分析来抽取人脸图像的有效鉴别特征,最后在ORL人脸库上实验结果表明所提出的方法不仅识别性能优于经典的Fisherfaces,而且仅用14个特征识别率就达到96%。  相似文献   

12.
寄生虫病是危害人类及动物健康的疾病之一。为了实现对寄生虫卵的自动识别,辅助临床检测,提出基于线性判别分析的寄生虫卵识别方法。采用结合形态学滤波和Otsu的方法分割得到寄生虫卵及其轮廓,提取形状特征和纹理特征作为特征向量集,并利用线性判别分析实现对寄生虫卵自动识别。实验结果表明,该方法对6种寄生虫卵的识别正确率达到90.70%。  相似文献   

13.
小波变换后的低频子带图像既去除了某些表情变化,又减小了数据量,而图像的频谱特征则具有良好分类特性,因此两者结合后得到的频谱脸在人脸识别方面具有相当高的应用价值。先利用小波变换和Fourier变换求得原始人脸图像的频谱脸(Spectrofaces),再对频谱脸继续求取各自的本征脸(Eigenface)和LDA(Linear Discriminant Analysis)特征作为分类特征,并利用了不同的分类方法进行识别。实验是利用ORL人脸库进行的,实验结果证明了比起直接利用空间域上原始图像的识别方法来说,基于频谱的方法可以有效提高识别率。  相似文献   

14.
基于集成学习的规范化LDA人脸识别   总被引:1,自引:1,他引:0  
针对人脸识别问题中经常面临的“小样本”问题,在规范化的LDA算法的基础上加以改进,并结合集成学习的方法,利用Adaboost算法,在每一次的迭代过程中引进一个加权函数对难以分离的样本增加权重。增加分类器之间的差异度,从而提高样本在新的特征空间中的可分离性,将识别率提高至98.5%。通过ORL数据库的大量实验表明,该算法比传统算法有更好的性能。  相似文献   

15.
基于ICA和FLD相结合的人脸识别   总被引:1,自引:0,他引:1  
ICA作为一种传统的人脸识别方法,虽然识别效果较好,但却没有考虑类别信息。为了将类别信息融入ICA方法中,尝试利用FLD和ICA相结合的方法对人脸进行识别处理,即在使用ICA方法获得训练模式的统计独立基向量的基础上,对基向量张成的子空间使用FLD方法。利用几个人脸数据库对该方法进行了实验。实验结果表明,使用上述方法进行人脸识别,其效果优于传统的PCA方法、FLD方法和ICA方法。  相似文献   

16.
利用相似度多个维度的信息进行开集判别,以提高开集人脸识别的准确率。该方法首先通过大量带标识的测试样本获得已知类样本和非已知类样本相似度向量的分布,然后引入线性判别分析学习两个类中相似度向量的分布特征,在开集判别中通过相似度向量的特征匹配来判断样本是否为已知类。利用相似度分布中的分类信息,训练出的特征具有更强的分类能力。不同人脸库的实验表明,相对于传统方法,文中方法能提高开集识别的准确率。  相似文献   

17.
改进的线性判别分析及人脸识别   总被引:1,自引:0,他引:1  
为有效解决传统LDA(线性鉴别分析)的小样本规模问题,提出一种改进的LDA算法。首先对样本进行无损降维;然后在Fisher准则基础上,用散度矩阵差代替散度矩阵的比值,避免对类内矩阵求逆的同时也降低了计算复杂度,实现有效的特征抽取;最后实现对人脸的识别。实验结果表明,该算法是有效的,优于传统LDA方法。  相似文献   

18.
基于Gabor小波变换多特征向量的人脸识别鲁棒性研究   总被引:1,自引:0,他引:1  
彭辉 《计算机科学》2014,41(2):308-311,316
传统的Gabor小波变换人脸识别技术在曲线奇异性的表达上存在着不足,难以识别包含表情的人脸信息,针对该问题,提出了结合Gabor小波变换和多特征向量的人脸识别算法。算法首先利用Gabor小波变换的频率及方向选择性来提取出人脸的多尺度、多方向上的Gabor特征,并组成联合稀疏模型,通过计算可以得到各个方向和尺度上Gabor特征的共同特征和表情特征,利用这两个特征向量可以精确重构测试图像的特征向量。仿真实验结果表明,所提出的方法能够有效提高带表情人脸图像的正确匹配率,改善识别效果 。  相似文献   

19.
提出了一种基于Gabor小波变换和监督等距映射(supervised isometric feature mapping,S-ISOMAP)的人脸识别方法.针对流形学习算法不能消除图像特征向量中高阶相关信息的缺点,引入Gabor对归一化的人脸图像进行多方向、多分辨率滤波,并提取其对应不同方向、不同尺度的多个Gabor幅值特征(Gabor magnitude feature,GMF),然后使用具有提取鉴别子流形的S-ISOMAP算法对GMF特征进行维数约简,最后使用最近邻分类器进行分类.该方法综合运用了Gabor特征对人脸图像的优异的表征能力、S-ISOMAP的非线性维数约简能力,使得该方法对光照和表情变化等具有良好的鲁棒性.在YaleB和PIE人脸库上的实验表明了该方法的有效性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号