首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
光声成像技术可以提供深层组织的高分辨率和高对比度的组织断层图像,是进行脑成像的有力潜在工具之一。本文开展此项研究,搭建一套光声成像实验系统,在此基础上,获得10mm的混浊介质深度下的血管模拟样品图像,直径0.07mm的模拟血管能清晰地成像;活体研究中,成功进行活体白鼠脑部的血管分布的成像研究,重建图像中的各血管位置和形状与实际情况很好的吻合。  相似文献   

2.
We demonstrate detection and resolution of high power, 34 ns free electron laser pulses using a rectifying field effect transistor. The detector remains linear up to an input power of 11 ± 0.5 W at a pulse energy of 20 ± 1 μJ at 240 GHz. We compare its performance to a protected Schottky diode, finding a shorter intrinsic time constant. The damage threshold is estimated to be a few 100 W. The detector is, therefore, well-suited for characterizing high power THz pulses. We further demonstrate that the same detector can be used to detect low power continuous-wave THz signals with a post detection limited noise floor of 3.1 μW/√Hz. Such ultrafast, high power detectors are important tools for high power and high energy THz facilities such as free electron lasers.  相似文献   

3.
基于半导体激光器的乙炔气体光声光谱检测及其定量分析   总被引:2,自引:0,他引:2  
油中溶解乙炔是变压器等油浸式电气设备早期放电性故障的重要特征气体。基于半导体激光器的光声光谱传感技术具有灵敏度高,选择性好等优点,能很好地应用于微弱气体检测中。论文构建了基于分布反馈半导体激光器光声光谱检测装置,并分析了光声池的特性参数;实验研究了光声信号与激光功率、乙炔气体浓度之间的关系;并借助激光器的波长调制特性,研究了乙炔分子在近红外区第一泛音带1.5μm附近的光声光谱;提出了一种基于最小二乘回归的光声光谱定量分析方法。理论和实验结果为乙炔的光声光谱在线检测及高灵敏度可调谐光声光谱仪的设计提供了参考。  相似文献   

4.
A simple and inexpensive relative energy monitor for short laser pulses is described. The three basic units of this system are an integrating detector circuit, an amplifier, and a peak detector and hold circuit. With this device one can measure optical pulse energies (at 1.06 microm) as small as 1.0 nJ with an electronic accuracy of approximately 1%.  相似文献   

5.
碲镉汞光导探测器在中红外激光测量中的热问题   总被引:1,自引:0,他引:1  
为了准确测量中红外高能激光系统的远场功率密度时空分布等参数,分析了室温光导型碲镉汞(HgCdTe)探测器在环境温度变化和光热效应情况下存在的探测器光敏元温升等热问题,并分别给出了应对措施。从HgCdTe的电学参数经验公式和光导型探测器工作原理出发,分析了暗电阻和响应率与光敏元工作温度的相关性。建立了计入接触热阻和自然对流效应的光导型HgCdTe探测器热分析模型,并对模型进行了实验验证。分析了光敏元与环境温度间的热平衡时间特性,提出了连续激光测量中的环境温度校正模型。讨论了激光辐照下探测器的动态响应特性,给出了激光加热探测器光敏元导致的附加光热信号的修正方法,该方法在典型应用条件下可将测量系统的单通道测量不确定度降低2%以上。目前,所述方法均已成功应用于多套远场激光光斑定量测量系统。  相似文献   

6.
A gas detector with a 2D pixel readout is proposed for a future soft x-ray (SXR) tomography with discrimination in energy bands separately per pixel. The detector has three gas electron multiplier foils for the electron amplification and it offers the advantage, compared with the single stage, to be less sensitive to neutrons and gammas. The energy resolution and the detection efficiency of the detector have been accurately studied in the laboratory with continuous SXR spectra produced by an electronic tube and line emissions produced by fluorescence (K, Fe, and Mo) in the range of 3-17 keV. The front-end electronics, working in photon counting mode with a selectable threshold for pulse discrimination, is optimized for high rates. The distribution of the pulse amplitude has been indirectly derived by means of scans of the threshold. Scans in detector gain have also been performed to assess the capability of selecting different energy ranges.  相似文献   

7.
The unique capabilities of ultrashort pulse femtosecond lasers have been integrated with a focused ion beam (FIB) platform to create a new system for rapid 3D materials analysis. The femtosecond laser allows for in situ layer-by-layer material ablation with high material removal rates. The high pulse frequency (1 kHz) of ultrashort (150 fs) laser pulses can induce material ablation with virtually no thermal damage to the surrounding area, permitting high resolution imaging, as well as crystallographic and elemental analysis, without intermediate surface preparation or removal of the sample from the chamber. The TriBeam system combines the high resolution and broad detector capabilities of the DualBeam(TM) microscope with the high material removal rates of the femtosecond laser, allowing 3D datasets to be acquired at rates 4-6 orders of magnitude faster than 3D FIB datasets. Design features that permit coupling of laser and electron optics systems and positioning of a stage in the multiple analysis positions are discussed. Initial in situ multilayer data are presented.  相似文献   

8.
为了探索低成本、大深宽比加工方法,建立了实用的准分子激光微加工系统.以玻璃为实验靶材,用精密微动平台准确调节靶材位置,利用波长248nm的KrF准分子激光器,研究了准分子激光直写刻蚀过程中平均刻蚀速率与激光脉冲能量密度之间的关系.加工出的沟槽剖面形状均呈现锥型,单脉冲烧蚀速率随脉冲数的增加而减小,激光脉冲对材料的刻蚀具有能量阈值,加工槽的深度具有上限值.采用平行激光束或对加工过程进行动态控制还可实现矩形深槽或圆柱深孔的加工.  相似文献   

9.
A repeatable and flexible technique for pulse shortening of laser pulses has been applied to transversely excited atmospheric (TEA) CO(2) laser pulses. The technique involves focusing the laser output onto a highly reflective metal target so that plasma is formed, which then operates as a shutter due to strong laser absorption and scattering. Precise control of the focused laser intensity allows for timing of the shutter so that different temporal portions of the pulse can be reflected from the target surface before plasma formation occurs. This type of shutter enables one to reduce the pulse duration down to ~2 ns and to remove the low power, long duration tails that are present in TEA CO(2) pulses. The transmitted energy is reduced as the pulse duration is decreased but the reflected power is ~10 MW for all pulse durations. A simple laser heating model verifies that the pulse shortening depends directly on the plasma formation time, which in turn is dependent on the applied laser intensity. It is envisaged that this plasma shutter will be used as a tool for pulse shaping in the search for laser pulse conditions to optimize conversion efficiency from laser energy to useable extreme ultraviolet (EUV) radiation for EUV source development.  相似文献   

10.
A design of derivative photoacoustic spectrometer is presented in this article. It mainly includes a wavelength-intensity splitter and a complementary chopper. In our design, a dual wavelength derivative method is introduced to implement a derivative operation. Through the wavelength-intensity splitter, two beams are obtained and then complementarily modulated by the complementary chopper to satisfy the first derivative requirements as well as to achieve the differential of photoacoustic signals. As examples, the first derivative photoacoustic spectra of He-Ne laser and xenon lamp are also presented in this article. The results show that the first derivative photoacoustic spectrum can provide a superior fine spectral structure and spectral resolution compared to the photoacoustic absorption spectrum.  相似文献   

11.
The capability of direct writing makes ultrashort pulse laser significant in the microfabrication of MEMS devices based on polymer and glass. In particular, nanosecond and femtosecond lasers are able to transfer the adequate energy in femtosecond intervals for the removal of the materials. Because of its advantages, just like the small feature size, smooth finishing surface, flexible structuring and the minimum thermal effect, ultrashort pulse lasers have become a convincing technique with the high peak power. This paper presents the femtosecond laser machining results of the polycarbonate, aluminosilicate glasses and nanosecond laser machining of aluminosilicate glasses. The microchannels with the critical micron-scale dimensions and the sub-micron scale surface roughness were achieved by the optimized operating parameters of the laser. The major influence factors such as cutting speed, power energy, and power stability were analyzed to obtain the optimized parameters for the fabrication of the microchannels for a bubble switch. The ultrashort pulse laser micromachining was applied in the prototype of a bubble optical switch. By miniaturization of the structure of the microchannel, the switch speed can be promisingly improved.  相似文献   

12.
To manufacture parts with nano- or micro-scale geometry using laser machining, it is essential to have a thorough understanding of the material removal process in order to control the system behaviour. At present, the operator must use trial-and-error methods to set the process control parameters related to the laser beam, motion system, and work piece material. In addition, dynamic characteristics of the process that cannot be controlled by the operator such as power density fluctuations, intensity distribution within the laser beam, and thermal effects can significantly influence the machining process and the quality of part geometry. This paper describes how a multi-layered neural network can be used to model the nonlinear laser micro-machining process in an effort to predict the level of pulse energy needed to create a dent or crater with the desired depth and diameter. Laser pulses of different energy levels are impinged on the surface of several test materials in order to investigate the effect of pulse energy on the resulting crater geometry and the volume of material removed. The experimentally acquired data is used to train and test the neural network's performance. The key system inputs for the process model are mean depth and mean diameter of the crater, and the system outputs are pulse energy, variance of depth and variance of diameter. This study demonstrates that the proposed neural network approach can predict the behaviour of the material removal process during laser machining to a high degree of accuracy.  相似文献   

13.
We report on the construction and performance of a novel photoelectron-photoion coincidence machine in our laboratory in Amsterdam to measure the full three-dimensional momentum distribution of correlated electrons and ions in femtosecond time-resolved molecular beam experiments. We implemented sets of open electron and ion lenses to time stretch and velocity map the charged particles. Time switched voltages are operated on the particle lenses to enable optimal electric field strengths for velocity map focusing conditions of electrons and ions separately. The position and time sensitive detectors employ microchannel plates (MCPs) in front of delay line detectors. A special effort was made to obtain the time-of-flight (TOF) of the electrons at high temporal resolution using small pore (5 microm) MCPs and implementing fast timing electronics. We measured the TOF distribution of the electrons under our typical coincidence field strengths with a temporal resolution down to sigma=18 ps. We observed that our electron coincidence detector has a timing resolution better than sigma=16 ps, which is mainly determined by the residual transit time spread of the MCPs. The typical electron energy resolution appears to be nearly laser bandwidth limited with a relative resolution of DeltaE(FWHM)/E=3.5% for electrons with kinetic energy near 2 eV. The mass resolution of the ion detector for ions measured in coincidence with electrons is about Deltam(FWHM)/m=14150. The velocity map focusing of our extended source volume of particles, due to the overlap of the molecular beam with the laser beams, results in a parent ion spot on our detector focused down to sigma=115 microm.  相似文献   

14.
The effect of laser pulse energy on the composition measurement of an Al–Mg–Si–Cu alloy (AA6111) specimen has been investigated over a base temperature range of 20–80 K and a voltage range of 2.5–5 kV. Laser pulse energy must be sufficiently higher to achieve pulse-controlled field evaporation, which is at least 0.9 nJ with a beam spot size of about 5 μm, providing an equivalent voltage pulse fraction, ∼14% at 80 K for the alloy specimen. In contrast to the cluster composition, the measured specimen composition is sensitive to base temperature and laser energy changes. The exchange charge state under the influence of laser pulsing makes the detection of Si better at low base temperature, but detection of Cr and Mn is better at a higher temperature and using higher laser energy. No such effect occurs for detection of Mg and Cu under laser pulsing, although Mg concentration is sensitive to the analysis temperature under voltage pulsing. Mass resolution at full-width half-maximum is sensitive to local taper angle near the apex, but has little effect on composition measurement.  相似文献   

15.
Femtosecond pulsed laser (800 nm, 120 fs) micromachining of thin films of 3C-SiC (β-SiC) semiconductor deposited on silicon substrate was investigated as a function of pulse energy (0.5 μJ to 750 μJ). The purpose is to establish suitable laser parametric regime for the fabrication of high accuracy, high spatial resolution and thin diaphragms for high-temperature MEMS pressure sensor applications. Etch rate, ablation threshold and quality of micromachined features were evaluated. The governing ablation mechanisms, such as thermal vaporization, phase explosion, Coulomb explosion and photomechanical fragmentation, were correlated with the effects of pulse energy. The results show that the etch rate is higher and the ablation threshold is lower than those obtained with nanosecond pulsed excimer laser ablation, suggesting femtosecond laser’s potential for rapid manufacturing. In addition, the etch rates were substantially higher than those achievable in various reactive ion and electrochemical etching methods. Excellent quality of machined features with little collateral thermal damage was obtained in the pulse energy range (1–10 μJ). The leading material removal mechanisms under these conditions were photomechanical fragmentation, ultrafast melting and vaporization. At very low pulse energies (<1 μJ), nanoscale material removal has occurred with the formation of nanoparticles that is attributed to Coulomb explosion mechanism. The effect of assist gas on the process performance at low and high energy fluences is also presented.  相似文献   

16.
This work provides the fundamental knowledge of energy transport characteristics during very short-pulse laser heating of semiconductors from a microscopic viewpoint. Based on the self-consistent hydrodynamic equations, in-situ interactions between carriers, optical phonons, and acoustic phonons are simulated to figure out energy transport mechanism during ultrafast pulse laser heating of a silicon substrate through the detailed information on the time and spatial evolutions of each temperature for carriers, longitudinal optical (LO) phonons, acoustic phonons. It is found that nonequilibrium between LO phonons and acoustic phonons should be considered for ultrafast pulse laser heating problem, two-peak structures become apparently present for the subpicosecond pulses because of the Auger heating. A substantial increase in carrier temperature isobserveds for lasers with a few picosecond pulse duration, whereas the temperature rise of acoustic and phonon temperatures is relatively small with decreasing laser pulse widths. A slight lagging behavior is observed due to the differences in relaxation times and heat capacities between two different phonons. Moreover, the laser fluence has a significant effect on the decaying rate of the Auger recombination.  相似文献   

17.
A precipitation hardened maraging TRIP steel was analyzed using a pulsed laser atom probe. The laser pulse energy was varied from 0.3 to 1.9 nJ to study its effect on the measured chemical compositions and spatial resolution. Compositional analyses using proximity histograms did not show any significant variations in the average matrix and precipitate compositions. The only remarkable change in the atom probe data was a decrease in the ++/+ charge state ratios of the elements. The values of the evaporation field used for the reconstructions exhibit a linear dependence on the laser pulse energy. The adjustment of the evaporation fields used in the reconstructions for different laser pulse energies was based on the correlation of the obtained cluster shapes to the TEM observations. No influence of laser pulse energy on chemical composition of the precipitates and on the chemical sharpness of their interfaces was detected.  相似文献   

18.
用于纳秒级窄脉冲工作的大功率半导体激光器模块   总被引:2,自引:2,他引:0  
介绍了一种将脉冲半导体激光器发射应用系统中脉冲整形电路、驱动电路、激光器保护电路、激光器集成封装成一个激光器模块的方式。当激光器工作于纳秒级窄脉冲状态下时,激光器封装引腿所产生电抗会使得耦合进激光器的脉冲波形劣化,能量损失。为得到上升时间短,波形半宽窄,峰值功率大的光输出,改进激光器管芯的结构并采用混合光电子集成的方式将驱动电路和激光器管芯封装在一个模块内,使得窄脉冲电信号高效地耦合进半导体管芯。分析验证了改进后的激光器模块的各项输出参数均得到改善。同等条件下,改进后的模块在光脉冲宽度为4.5ns时,峰值功率比单独封装激光器提高6倍多。此激光器模块可以得到宽度7ns左右,峰值光功率176W的光脉冲输出。测试了该模块在脉冲宽度为7ns左右的U-P曲线。  相似文献   

19.
We have recently reported the design concept and sensor fabrication for a novel bolometric x-ray detector based on a rare earth manganite material for application as a total energy monitor for the Linac Coherent Light Source (LCLS) free electron laser at the Stanford Linear Accelerator Center (SLAC). The detector employs epitaxial thin films of Nd(0.67)Sr(0.33)MnO(3) grown on Si by pulsed laser deposition. In this paper we report details of the fabrication of the actual detector, its response characteristics under photon illumination from LCLS, and improvements in the growth scheme of the sensor material on Si using a buffer/template layer scheme that employs yttria-stabilized zirconia, cerium oxide (CeO(2)), and bismuth titanate (Bi(4)Ti(3)O(12)). The thermal sensor response changes linearly with the energy of an optical calibration laser as expected, and the signals from optical and x-ray pulses at LCLS are very similar, thereby validating the design concept. To the best of our knowledge, the LCLS detector application reported here is the first practical use of colossal magnetoresistive manganite bolometers.  相似文献   

20.
For multiple laser pulse experiments, it is necessary to split a laser pulse. In order to split a short laser pulse without stretching the pulse width, the laser pulse should not pass through thick materials. For this reason, a pellicle beam splitter (BS) and/or a mirror with a hole are required as a BS for the short laser pulse. The focusing qualities of the laser pulse after passing through the pellicle BS and the mirror with a hole are the same as without the BS's. The laser pulse quality reflected by the BSs should be considered for the laser pulse. A pellicle BS is a thin foil, so, it is weak against vibrations. One should be careful about airflows and isolation from vibration sources. The spot size of the reflected laser pulse is consistent with the size reflected by a normal mirror. The energy loss is about 10% compared with a normal mirror. A mirror with a hole is strong against external vibrations. The reflected laser pulse has a doughnut shape. The reflected laser pulse is interfered due to the shape. In order to cleanly focus the laser pulse, the inside size of the doughnut should be smaller than a half size of the outside portion of the doughnut.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号