首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tribological behavior of superhard amorphous carbon films The tribological behaviour of amorphous carbon films is determined by monomolecular covering layers strongly attached to the surface. They cause the very low friction in normal humid air, their absence in dry air or vacuum leads to high friction. Any lubricants usually do not improve the tribological behaviour in comparison to air. However for non‐hydrogenated ta‐C films by attachment of specially adapted lubricants an additionally marked reduction of friction is possible.  相似文献   

2.
Diamond‐like carbon thin films enhance efficiency — laser arc deposition of ta‐C Rising prices for fossil fuels as well as the increasing effects of the climate change due to the emission of greenhouse gases reveal the necessity of saving energy. Low friction coatings have an enormous potential in saving energy. Carbon based coatings — named as DLC coatings — are especially well suited for low friction coatings. In particular hydrogen‐free tetrahedral amorphous carbon (ta‐C) coatings are of great interest due to their extraordinary low wear properties. In addition they show excellent low friction properties and especially in combination with specific lubricants the so‐called super low friction effect. For the deposition of ta‐C coatings PVD methods have to be applied instead of CVD methods as it is the case for conventional DLC coatings. We have developed a deposition method which is based on a pulsed arc steered by a laser (Laser‐Arc). This allows us to use large cathodes resulting in a high long‐term stability. Furthermore, the carbon plasma source can be combined with a filtering unit removing almost all droplets and particles, which usually are characteristic for an arc process. The resulting Laser‐Arc source allows for the deposition of smooth and virtually defect‐free ta‐C coatings with a competitive deposition rate.  相似文献   

3.
In this study hydrogenated amorphous carbon films (a-C:H) and silicon doped hydrogenated amorphous carbon films (a-C:H:Si) with different hydrogen and silicon contents were deposited onto sensors of a quartz crystal microbalance with dissipation detection (QCM-D). The resulting films were investigated with regard to their structural and elemental compositions using Raman spectroscopy, elastic recoil detection analysis and Rutherford backscattering spectroscopy. Furthermore the surface free energy (SFE) of the films was determined using contact angle measurements. The polar part of SFE of the a-C:H:Si films was found to be adjustable by the silicon content in these films and increased by increasing amounts of silicon. Carbon films with a broad range of chemical composition showed similar structure and properties when deposited on QCM-D sensors as compared with the deposition on silicon wafers. Subsequently, the amorphous carbon coated QCM-D sensors were used to study the adsorption of human serum albumin. These QCM-D results were related to the surface properties of the films.  相似文献   

4.
Summary Classical molecular dynamics simulations, using Brenner's bond-order interatomic potential model, is used to study the bonding microstructure formation during quench from liquid and during growth on a diamond surface. For a 64-atom quench simulation we find 56 sp3- and 8 sp2-bonded carbon atoms, in qualitative agreement with tight-binding simulations. The growth of amorphous carbon films was simulated by depositing carbon and hydrogen atoms onto a diamond surface at energies up to 100 eV The simulated films are amorphous with a maximal density near the deposition energies (20–40 eV) used to grow films on magnetic disks. Lower deposition energies yield open graphitic structures, while much higher deposition energies cause the surface to ablate, leading to a poorly defined interface. The hardness calculated from the densest simulated films is about twice that found experimentally.  相似文献   

5.
Solid lubricants: a review   总被引:2,自引:1,他引:1  
The fundamental mechanisms of solid lubrication are reviewed with examples from well-known solid lubricants like the transition metal dichalcogenides and diamond-like carbon families of coatings. Solid lubricants are applied either as surface coatings or as fillers in self-lubricating composites. Tribological (friction and wear) contacts with solid lubricant coatings typically result in transfer of a thin layer of material from the surface of the coating to the counterface, commonly known as a transfer film or tribofilm. The wear surfaces can exhibit different chemistry, microstructure, and crystallographic texture from those of the bulk coating due to surface chemical reactions with the surrounding environment. As a result, solid lubricant coatings that give extremely low friction and long wear life in one environment can fail to do so in a different environment. Most solid lubricants exhibit non-Amontonian friction behavior with friction coefficients decreasing with increasing contact stress. The main mechanism responsible for low friction is typically governed by interfacial sliding between the worn coating and the transfer film. Strategies are discussed for the design of novel coating architectures to adapt to varying environments.  相似文献   

6.
Reduction of friction and wear for parts made of aluminium by diamond-like carbon coatings Reduction of friction and wear of machine parts and tools is usually achieved by separating the participating surfaces. This is predominantly done by liquid lubricants. Solid lubricant coatings replace them where hydrodynamic lubrication is not possible or not active. Among the hard and friction reducing layers diamond-like carbon films (DLC) have distinguished themselves as the most interesting representatives. They are deposited on metallic and ceramic parts in a glow discharge of a hydrocarbon gas at temperatures between 150 and 200 °C. Those low deposition temperatures, their very low dry sliding friction coefficient of 0.05 to 0.1, and an elastic recovery of 90 % differentiate them from PVD coatings to a high degree. DLC can also be deposited on light metals with thicknesses of more than 30 μm. For closed films an outstanding protection against corrosion is established. Machining and forming of light metals can be done without cooling lubricants.  相似文献   

7.
为了改善CrAlN薄膜的摩擦性能, 本研究在增强磁过滤脉冲偏压电弧离子镀设备上, 用分离靶弧流调控技术在硬质合金基体上分别制备了不同成分的CrAlN-DLC硬质复合薄膜, 并采用不同手段表征了薄膜的表面形貌、成分、相结构以及力学和摩擦性能。结果表明, 不同成分薄膜表面均平整致密, 膜厚均在1.05 μm左右。随着靶弧流比IC/ICrAl的升高, 薄膜中碳的原子分数由33.1%升至74.6%。薄膜的相结构主要由晶体相和非晶相复合组成, 其晶体相主要为c-(Cr,Al)N相, 且随着碳含量增大晶体相减少、晶粒尺寸减小, 其非晶相主要为DLC, 其中sp2/sp3的比值随碳含量增大而减小。相应地, 薄膜的硬度随着碳含量增大而提高, 当碳的原子分数为74.6%时, 达到最大值(26.2±1.4) GPa, 且该成分点处薄膜摩擦系数也降至最小值0.107, 磨损率仅为3.3×10-9 mm3/Nm。综合而言, 当非晶DLC相最多时, CrAlN-DLC复合薄膜的综合性能达到最佳, 较之CrAlN薄膜, 摩擦性能显著提高。  相似文献   

8.
In this paper, a particular class of nano-diamond films deposited by energetic species is described. Deposition is carried out using the direct-current glow-discharge (DC GD) deposition technique from a methane/hydrogen mixture. In this method, film growth occurs from energetic species being accelerated and incorporated into the film surface. The growth of the nano-diamond film occurs on top of a preferentially oriented graphitic precursor with its basal planes perpendicular to the substrate surface. The nano-diamond films consist of an agglomerate of diamond particles with particle sizes in the 3-5 nm range with amorphous grain boundaries. The hydrogen concentration in the graphitic precursor is only a few percent; however, it increases to ∼15-20 at.% in the nano-diamond film.From a microscopic perspective nano-diamond film and growth from energetic species is explained as a sub-surface process in terms of a four-step cyclic process. The DC GD-deposited nano-diamond films were comprehensively explored by a number of complementary techniques. The hydrogen content and its role in nano-diamond film formation were assessed. The experimental methods used in our studies comprise near-edge X-ray adsorption fine structure (NEXAFS) to prove the short-range coordination of the carbon films and indirectly their phase composition. The surface and grain boundary phase composition were investigated by a combination of electron energy loss spectroscopy (EELS) measured as a function of incident electron energy and hydrogen etching experiments. By transmission electron microscopy (TEM), the micro-structural evolution and their visualization were achieved. The density evolution of the films was determined by X-ray reflectivity (XRR). The hydrogen content and its distribution in the films were studied by secondary ion microscopy spectroscopy (SIMS) and elastic recoil detection (ERD). The hydrogen bonding was investigated by high-resolution electron energy loss spectroscopy (HREELS).Most likely, hydrogen is bonded within the amorphous grain boundaries and saturates the nano-diamond particles. The surface of the films is amorphous in nature.  相似文献   

9.
Structural and surface energy analysis of nitrogenated ta-C films   总被引:1,自引:0,他引:1  
Surface and bulk properties of the Filtered Cathodic Vacuum Arc prepared nitrogenated tetrahedral amorphous carbon (ta-C:N) films were characterized by X-ray Photoelectron Spectroscopy (XPS), Time of Flight Secondary Ion Mass Spectroscopy (ToF-SIMS), Raman spectroscopy, Atomic Force microscopy and contact angle techniques. An increase in the Nitrogen (N) content of the films is accompanied by a reduction in the sp3 fraction, confirmed via the deconvolution of the C 1 s XPS spectra. Critical Raman parameters such as peak position and peak width of the G band, defect ratio, ID/IG and skewness of the G line were analyzed as a function of N content. ToF-SIMS showed the variance of chemical composition with the increase in the sputtering depth. While some amount of incorporated oxygen and hydrogen were observed for all films; for high N content ta-C:N films signature of CN bonds was evident. Surface energies (both polar and dispersive components) for these ta-C:N films were analyzed in a geometric mean approach. Contact angle measurements using both deionized water and ethylene glycol reveal that upon the insertion of nitrogen into ta-C films, the initial change in the contact angle is sharp, followed by a gradual decrease with subsequent increase in N content. The variation of contact angle with increasing N content corresponds to an increase of the total surface energy with an increase of the polar component and a decrease of the dispersive component.  相似文献   

10.
Amorphous carbon nitride thin films have been prepared on Si (100) wafers by nitrogen ion beam assisted Nd:YAG laser ablation techniques. Amorphous carbon and carbon nitride films have also been prepared by the conventional laser ablation techniques for comparison. Raman spectroscopy and spectroscopic ellipsometry have been performed for the films to analyze structural properties, atomic force microscopy to observe surface morphologies, and scratch, acoustic emission, and Vicker hardness test to examine mechanical properties. The amorphous carbon nitride films deposited by the ion beam assisted laser ablation techniques had generally better mechanical properties compared to the amorphous carbon films and amorphous carbon nitride films deposited in N2 atmosphere. The amorphous carbon nitride films deposited at optimum ion beam current of 10 mA and laser power density of 1.7 × 109 W/cm2 showed excellent mechanical properties: root mean square surface roughness of 0.33 nm, friction coefficient of 0.02–0.08, the first crack and critical load of 11.5 and 19.3 N respectively, and Vicker hardness of 2300 [Hv]. It is considered that the films have high potential for protective coatings for microelectronic devices such as magnetic data storage media and heads.  相似文献   

11.
Hydrogen plays a crucial role in the growth of micro-crystalline diamond (MCD) and diamond like carbon (DLC) thin films grown by plasma assisted chemical vapour deposition (PACVD) processes. It selectively etches graphite phase and helps in stabilizing the diamond phase. The presence of various hydrocarbon species in the plasma and their reaction with atomic, excited or molecular hydrogen on the substrate surface decide the mechanism of diamond nucleation and growth. Several mechanisms have been proposed but the process is still not well understood. Control of hydrogen and other deposition parameters in the PACVD process leads to deposition of yet another class of materials called diamond like carbon. By varying the concentration of hydrogen it is possible to produce purely amorphous carbon films on the one hand and amorphous hydrogenated carbon films (with as high as 60% hydrogen) on the other. Very hard, optically transparent and electrically insulating films characterize the diamond like behaviour. The proportion of hydrogen and its bonding with carbon or hydrogen in the film can be varied to obtain very hard to very soft films which could be optically transparent or opaque. The microstructure of these films have been investigated by a large number of techniques. The results show interesting situations. This paper reviews the work on the role of hydrogen on the growth, structure and properties of MCD and DLC thin films.  相似文献   

12.
The effect of Sn concentration on zinc oxide (ZnO) film properties has been investigated by depositing films with various Sn concentrations in the solution (Sn/Sn + Zn ratio from 0 to 50 at%) at a substrate temperature of 350°C by ultrasonic spray pyrolysis (USP) technique. The deposited films were characterized for their electrical, structural, morphological and elemental properties using current-voltage and conductivity-temperature measurements, X-ray diffraction, scanning electron microscopy and energy dispersive X-ray spectroscopy. Electrical investigations showed that the resistivity of ZnO films decreases for lower Sn concentration (at 10%) and then increases for higher Sn concentration (at 30–50%). Also, depending on the increasing Sn concentration, energies of donor-like traps for ZnO films decreased and activation energy of donors for ZnO films increased. The XRD patterns showed that the as-deposited films have polycrystalline structure and the crystalline nature of the films was deteriorated with increasing Sn concentration and a shift to amorphous structure was seen. The effect of Sn concentration was to increase the surface roughening and change considerably the morphologies of ZnO films. The most homogenous surface was seen in ZnO films. EDS results showed that all elements in the starting solutions were in the solid films and Zn element is more dominant than Sn on the surfaces. After all investigations, it was determined that Sn incorporation dramatically modifies the properties of ZnO films. ZnO and ZnO:Sn (10 at%) films have a low resistivity and high transparency in the visible range and may be used as window material and antireflecting coating in solar cells while the other films may be used in gas sensors where high conductivity is unnecessary.  相似文献   

13.
The abrasion wear rates of amorphous carbon, silicon, germanium and SiNx films have been measured. The wear rate of all these films is shown to depend systematically on the amount of hydrogen incorporated in the film during the deposition process (either plasma or ion beam sputter deposition). This dependence can be understood from a decrease in the degree of cross-linking of the amorphous network when hydrogen is increasingly incorporated in the film. The resistance of unhydrogenated films to abrasive wear correlates with the atomic bond strengths of these materials, decreasing in the order carbon, SiNx, silicon, germanium. The wear properties of SiNx films depend on the incorporated hydrogen as well as on the N---Si composition of the films.  相似文献   

14.
The mechanism of wetting behavior of nanocrystalline diamond films is examined in terms of surface free energy, morphology, and bonding characteristics. The films are prepared by microwave plasma-enhanced chemical vapor deposition using Ar-rich/N2/CH4 and Ar-rich/H2/CH4 mixtures, followed by microwave hydrogen and oxygen plasma exposures separately. Contact angle measurement with water, ethylene glycol, and formamide reveals that both the as-deposited and hydrogen plasma treated films are hydrophobic, while the oxygen plasma treated film is extremely hydrophilic such that the contact angle is reduced down to almost zero degree. Fourier transform infrared spectroscopy reveals that the hydrogen atoms are dominantly bonded to diamond and amorphous sp3-bonded carbon, and they are removed by the oxygen plasma treatment. For the oxygen plasma treated film, the mean value of oxygen concentration for the top surface to bulk (~ 1 μm) measured by energy-dispersive X-ray spectroscopy is ~ 10 at.%, while that for the top several monolayers surface measured by X-ray photoelectron spectroscopy is much higher at ~ 37 at.%, indicating a higher degree of oxidation toward the surface. The carbon bonding state in the oxidized layer is disordered by incorporation of a large amount of oxygen in form of polar CO bonds, which is accountable for a greater polar component of the apparent surface free energy and stronger dipole-dipole interactions.  相似文献   

15.
Tribological Coatings Friction and wear limit the life of tribological systems and lead to damage valued in billion. In many cases tribologically stressed components or tools can only be economically operated with the use of lubricants. Tribologically effective films can replace lubricants or reduce the extent of their use. There are many ways to realise coatings with low friction but only carbon based coatings like DLC (diamond‐like carbon) and polycristalline diamond films combine low friction with a high wear resitant.  相似文献   

16.
Some frictional properties of tablet lubricants were determined. The friction coefficients and the adhesion forces of six lubricants were evaluated by the method proposed previously. The ejection force against the radial force for each lubricant yielded a straight line through the origin, so that the adhesion forces of these lubricants were estimated to be almost zero. All lubricants had low friction coefficients when they alone were compressed. The value for metal stearate was the smallest and that for talc was the largest. The affinity of the lubricants to the die wall, another important property of the lubricants, was also determined. After the die wall was conditioned by the tabletings of each lubricant alone, the serial tabletings of lactose granulates in the die were carried out. The increasing rate of ejection force in the conditioned die in a serial tableting was different for every pretreatment of each lubricant. The affinity of magnesium stearate to the die wall surface was superior to that of other lubricants.  相似文献   

17.
Nanocrystalline diamond/amorphous carbon (NCD/a-C) nanocomposite films have been deposited by microwave plasma chemical vapour deposition from CH4/N2 mixtures. In order to investigate their suitability as templates for the immobilization of biomolecules, e.g. for applications in biosensors, four differently prepared surfaces, namely as-grown, hydrogen plasma treated, oxygen plasma treated, and chemically treated with aqua regia, have been thoroughly characterized by methods such as XPS, TOF-SIMS, AFM, and contact angle measurements. In addition, in order to investigate the affinity of these surface to non-specific bonding of biomolecules, they have been exposed to bovine serum albumin (BSA). It turned out that already the as-grown surface is hydrogen terminated; the degree of the termination is even slightly improved by the hydrogen plasma treatment. Reaction with aqua regia, on the other hand, led to a partial destruction of the H-termination. The oxygen plasma treatment, finally, causes a termination by O and OH, rather than by carboxylic acid groups. In addition, an increase of sp2 bonded carbon is observed. All surfaces were found to be susceptible to attachment of BSA proteins, but the coverage of the hydrogen terminated was lower than that of the O-terminated film. The highest BSA concentrations were found for the aqua regia sample where the H-termination has been removed partially. Finally, our results show that even minor surface contaminations have a great influence on the BSA coverage.  相似文献   

18.
Creating micro-/nano-scale topography on material surfaces to change their wetting properties has been a subject of much interest in recent years. Wenzel in 1936 and Cassie and Baxter in 1944 proposed that by microscopically increasing the surface roughness of a substrate, it is possible to increase its hydrophobicity. This paper reports the fabrication of micro-textured surfaces and nano-textured surfaces, and the combination of both on stainless steel substrates by sandblasting, thermal evaporation of aluminum, and aluminum-induced crystallization (AIC) of amorphous silicon (a-Si). Meanwhile, fluorinated carbon films were used to change the chemical composition of the surfaces to render the surfaces more hydrophobic. These surface modifications were investigated to create superhydrophobic surfaces on stainless steel substrates. The topography resulting from these surface modifications was analyzed by scanning electron microscopy and surface profilometry. The wetting properties of these surfaces were characterized by water contact angle measurement. The results of this study show that superhydrophobic surfaces can be produced by either micro-scale surface texturing or nano-scale surface texturing, or the combination of both, after fluorinated carbon film deposition.  相似文献   

19.
Abstract

Some frictional properties of tablet lubricants were determined. The friction coefficients and the adhesion forces of six lubricants were evaluated by the method proposed previously. The ejection force against the radial force for each lubricant yielded a straight line through the origin, so that the adhesion forces of these lubricants were estimated to be almost zero. All lubricants had low friction coefficients when they alone were compressed. The value for metal stearate was the smallest and that for talc was the largest. The affinity of the lubricants to the die wall, another important property of the lubricants, was also determined. After the die wall was conditioned by the tabletings of each lubricant alone, the serial tabletings of lactose granulates in the die were carried out. The increasing rate of ejection force in the conditioned die in a serial tableting was different for every pretreatment of each lubricant. The affinity of magnesium stearate to the die wall surface was superior to that of other lubricants.  相似文献   

20.
Electroanalytical performance of carbon films with near-atomic flatness   总被引:1,自引:0,他引:1  
Physicochemical and electrochemical characterization of carbon films obtained by pyrolyzing a commercially available photoresist has been performed. Photoresist spin-coated on to a silicon wafer was pyrolyzed at 1,000 degrees C in a reducing atmosphere (95% nitrogen and 5% hydrogen) to produce conducting carbon films. The pyrolyzed photoresist films (PPF) show unusual surface properties compared to other carbon electrodes. The surfaces are nearly atomically smooth with a root-mean-square roughness of <0.5 nm. PPF have a very low background current and oxygen/carbon atomic ratio compared to conventional glassy carbon and show relatively weak adsorption of methylene blue and anthraquinone-2,6-disulfonate. The low oxygen/carbon ratio and the relative stability of PPF indicate that surfaces may be partially hydrogen terminated. The pyrolyzed films were compared to glassy carbon (GC) heat treated under the same conditions as pyrolysis to evaluate the electroanalytical utility of PPF. Heterogeneous electron-transfer kinetics of various redox systems were evaluated. For Ru(NH3)6(3+/2+), Fe(CN)6(3-/4-), and chlorpromazine, fresh PPF surfaces show electron-transfer rates similar to those on GC, but for redox systems such as Fe3+/2+, ascorbic acid, dopamine, and oxygen, the kinetics on PPF are slower. Very weak interactions between the PPF surface and these redox systems lead to their slow electron-transfer kinetics. Electrochemical anodization results in a simultaneous increase in background current, adsorption, and electron-transfer kinetics. The PPF surfaces can be chemically modified via diazonium ion reduction to yield a covalently attached monolayer. Such a modification could help in the preparation of low-cost, high-volume analyte-specific electrodes for diverse electroanalytical applications. Overall, pyrolysis of the photoresist yields an electrode surface with properties similar to a very smooth version of glassy carbon, with some important differences in surface chemistry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号