首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Truck weight-limit regulations have significant influence on truck operating weights. These regulations directly influence loads applied to highway facilities, such as bridges and pavements. “Truck weight” herein collectively refers to a vehicle’s gross weight, axle weights, and axle configuration. Truck load spectra as a result of truck weight limits are important to bridge engineering in many respects, such as that of determining requirements for evaluation and design of bridges for both strength and fatigue. This paper’s objective is to present a new method for predicting truck weight spectra resulting from a change in truck weight limits. This method is needed to estimate impacts of the change on highway bridges such as accelerated fatigue accumulation. Historical and recent truck weight data are used to test and illustrate the proposed method, and the results show its good prediction capability. This method is also applied here to an example of estimating the impact on steel bridge fatigue due to a possible increase in the gross-vehicle-weight limit from 356 kN (80 kips) on five axles to 431 kN (97 kips) on six axles. Also included is an investigation of the AASHTO fatigue truck model for steel bridge evaluation. Results show that the current fatigue truck model may become invalid under the studied scenario of truck weight-limit increase.  相似文献   

2.
United States highway bridge design has advanced into the era of risk-based practice, milestoned by the American Association of State Highway and Transportation Officials Load and Resistance Factor Design Bridge Design Specifications. On the other hand, national and state design codes cannot specifically account for localized risk for each bridge site, which may have significantly different loading conditions from the national average. This issue is focused on here, as related to the adequacy of current bridge design loads for sites in the state of Michigan. The structural reliability indices are calculated for a randomly selected sample of new bridges from the Michigan inventory, including four major girder bridge types. Weigh-in-motion truck load data collected in Michigan are used to statistically characterize the truck load effect in the bridges’ primary members for moment and shear at critical cross sections. The reliability indices are found to vary significantly among the bridge sites and types investigated. Many of them indicate inadequate design load for the Detroit area.  相似文献   

3.
The main objective of this research was to study the effects of different specified trucks on bridge rating with the load and resistance and factor rating (LRFR) procedure. Twelve specified trucks were selected for this study, which include one AASHTO design truck, three AASHTO legal trucks, and eight state legal trucks. These rating trucks were applied on 16 selected Tennessee Dept. of Transportation bridges to obtain the LRFR ratings. The selected bridges covered four commonly used bridge types, including prestressed I-beam bridges; prestressed box beam bridges; cast-in-place T-beam bridges; and steel I-beam bridges. The research results revealed that (1) LRFR AASHTO legal load ratings factors were enveloped by the LRFR HL-93 truck ratings factors, thereby confirming the validity of the LRFR tiered approach with regard to AASHTO legal loads; (2) the lighter state legal trucks were enveloped by the HL-93 loads, whereas the heavier state trucks with closer axle spacing typically resulted in load ratings that governed over the HL-93 loads; and (3) the bridges with both high average daily truck traffic and short spans were more likely to be governed by state legal load ratings instead of HL-93 load ratings.  相似文献   

4.
The dynamic response of highway bridges subjected to moving truckloads has been observed to be dependent on (1) dynamic characteristics of the bridge; (2) truck configuration, speed, and lane position on the bridge; and (3) road surface roughness profile of the bridge and its approach. Historically, truckloads were measured to determine the load spectra for girder bridges. However, truckload measurements are either made for a short period of time [for example, weigh-in-motion (WIM) data] or are statistically biased (for example, weigh stations) and cost prohibitive. The objective of this paper is to present results of a 3D computer-based model for the simulation of multiple trucks on girder bridges. The model is based on the grillage approach and is applied to four steel girder bridges tested under normal truck traffic. Actual truckload data collected using a discrete bridge WIM system are used in the model. The data include axle loads, truck gross weight, axle configuration, and statistical data on multiple presence (side by side or following). The results are presented as a function of the static and dynamic stresses in each girder and compared with code provisions for dynamic load factor. The study provides an alternate method for the development of live-load models for bridge design and evaluation.  相似文献   

5.
Historically, truck weight regulations have maintained controls on axle and gross weights with legal load formulas based on limiting allowable stresses in certain types of bridges. These stress limitations do not usually lead to consistent or defensible reliability levels and also ignore the impact of the weight regulation on the existing highway bridge network. This paper is the second part of a two-paper series. The companion paper by the first writer illustrated how new truck weight regulations can be developed to provide an acceptable reliability level. The target reliability level was derived from bridge structures designed to satisfy AASHTO standard design specifications that showed safe and adequate performance levels under current truck loading conditions. In this part of the two-paper series, a deterministic load capacity evaluation as well as a reliability assessment are performed to review the consequences of adapting such regulations on the existing U.S. bridge network. A sensitivity analysis shows how changes in the safety criteria used to develop the truck weight regulations would affect the existing bridge network. Detailed load capacity evaluations and reliability analyses also are performed on a representative sample of bridges to provide specific examples of expected changes in rating and safety levels if the proposed truck weight regulation is to be adopted.  相似文献   

6.
Overload attributable to increased vehicle loads is becoming an increasingly serious issue in highway transportation. Overload results in damages to bridge structures, degradation of their load-carrying capacities, and even collapse of bridges, which may cause loss of lives and properties. Hence, the actual load-carrying capacity of existing bridges with many years of service and obvious damages is becoming an important concern for researchers and engineers. In this paper, field experiments were conducted on a simply supported concrete girder bridge located at Province Road 209 of Hunan Province, China. Test loads were applied to the bridge through a group of hydraulic jacks to simulate the heavy vehicle loads of 196 and 294?kN on single-lane loaded and two-lane loaded cases. The results showed that at the deflection limit, the measured load-carrying capacity of the tested bridge was much higher than the designed value. During experiments, the transverse connection stiffness of the bridge varied insignificantly. Cumulative damage of the structure was observed when the simulated cyclic loads were increased to three times the weight of the 294?kN truck on a two-lane loaded case.  相似文献   

7.
Many bridges in the United States have reached or are approaching the end of their useful lives. Since the 1940s, salt and other deicing agents applied to highways and bridges, coupled with inadequate maintenance funding, have led to the premature deterioration of many bridges. Growth of the United States economy and population has increased vehicular traffic volume and loads. For these reasons, the need exists for large-scale rehabilitation, strengthening, widening, and replacement of bridges. The financial cost to society to replace these bridges or to rehabilitate them conventionally is staggering. What is needed are low cost, durable methods of strengthening current bridges, extending their lives so that state departments of transportation may spread out the process of eventual replacement. In constructing new bridges, better materials or designs are needed so we may avoid tomorrow the consequences we are experiencing with today’s bridges. Polymer matrix composites offer that potential. A design methodology developed for composite bridges is based on limiting live load deflections. This paper focuses on the establishment of deflection limitations for bridges constructed with advanced composite materials, based on limiting response accelerations produced by the passage of truck traffic.  相似文献   

8.
In 1995, the Federal Highway Administration (FHWA) required that all bridges, regardless of the design method used for the original design, be based on the load factor design (LFD) method. In order to comply with the FHWA requirements, state departments of transportation have converted to the LFD method for all new bridge ratings. Further, all existing bridges previously rated using the working stress design (WSD) method must be converted to the LFD method. Consequently, thousands of bridges must be rerated using the LFD method. Steel bridges rated by the WSD method have critical data missing to make the proper conversion to the LFD method. This paper presents a methodology and an intelligent decision support system to help bridge engineers convert a WSD-based bridge rating to the LFD-based rating with little human effort using the artificial intelligence approach of case-base reasoning. The proposed methodology can help bridge engineers create the missing LFD-based data efficiently and quickly with a minimum amount of work. This research demonstrates how bridge engineers can use a novel computing paradigm and modern computer tool to convert an antiquated database to current design.  相似文献   

9.
Development of Truck Weight Regulations Using Bridge Reliability Model   总被引:2,自引:0,他引:2  
Historically, truck regulations have maintained controls on axle and gross weights with legal load formulas based on limiting allowable stresses in certain types of bridges. These stress limitations do not usually lead to consistent or defensible safety levels and also ignore the cost impact of the weight regulation on the national bridge network. This paper illustrates how new truck weight regulations can be developed to provide acceptable safety levels. Target safety levels are derived from existing AASHTO bridge evaluation and rating procedures applied to structures showing adequate performance levels. Reliability indices are used to relate the statistics of bridge load effects, based on either existing or proposed truck weight regulations, to the dynamic behavior and resistance variables of existing bridges. The sensitivity of the results to various assumptions and errors in the database is also analyzed. An accompanying paper reviews the consequences of adapting such a formula on the safety of existing bridges. The deterministic analysis as well as a reliability assessment are performed in the accompanying paper to review the consequences of adapting such regulations on the U.S. bridge network using the National Bridge Inventory files.  相似文献   

10.
The effectiveness of posted load limits in reducing annual maximum live load effects, thus enhancing bridge reliability, is investigated for 12 and 40 m simple span highway bridges. Novel analytical expressions are derived for event gross vehicle weight (GVW) distributions that account for violation of posted load restrictions, and the corresponding annual maximum GVW distributions are presented. Annual reliability indices associated with load restrictions computed using typical bridge posting criteria and different compliance levels are compared to the target reliability index. For the case of perfect compliance, a posted load restriction can significantly reduce maximum annual live load effects and so enhance the reliability. Under imperfect compliance, however, a violation rate as low as 2.5% (i.e., one illegal truck in 40 ignores the posting) causes the mean value and variability of the annual maximum live load effect distribution to increase significantly, resulting in a significant loss in reliability. Thus, unless posted loads are strictly enforced, the effectiveness of enhancing existing bridge reliability with a posted load restriction is questionable.  相似文献   

11.
A primary means of demonstrating the feasibility and effectiveness of fiber-reinforced polymer (FRP) composite bridge materials is via in situ bridge load testing. For this study, the prescribed or assumed design factors for each of the study bridges were compared to those exhibited by the performance of the bridge. Specifically, the wheel load distribution factors and impact factors as defined by AASHTO were considered in order to assess the load transfer and distribution in structures utilizing FRP panels. The in situ testing configurations for the study bridges are outlined, including the truck and instrumentation placement to obtain the desired information. Furthermore, comparisons were drawn between the design values for deflection and those experienced by the structures during testing. It was found that although the deflections exhibited by the bridges were well within the design limits, further research is needed to be able to prescribe bridge design factors for FRP panels.  相似文献   

12.
The transportation infrastructure is key to economic development in the United States. Providing a high level of serviceability through periodic inspection and maintenance is important in keeping the transportation system operational and in avoiding major replacement efforts. Of particular importance is the inventory of bridges in the national transportation infrastructure, due to their high cost and direct impact on public safety. The focus of this paper is on information management in support of bridge maintenance functions. Particularly, the research project discussed in the paper addresses the need for inclusion of construction as-built data in the bridge management database along with the periodic inspection and maintenance data. Attention to this type of data has been lacking. Therefore, the paper promotes bridge as-built data, discusses its role in bridge management, and demonstrates the proper design of an as-built information management model and system that is integrated with existing standard bridge management systems such as Pontis.  相似文献   

13.
Rehabilitation of the existing bridges is one of the most pressing needs in maintenance of the transportation infrastructure. As an example, more than 2,000 bridges in Kansas alone need to be replaced during the next decade. The majority of these bridges have spans of 30 m (100 ft) or less, and shallow profiles. The inverted-T (IT) bridge system has gained increasing popularity in recent years due to its lower weight and relatively larger span-to-depth ratio compared to the prestressed I-girder bridges. However, there are some limitations in replacing the existing cast in place (CIP) bridges with IT system. Implementation of posttensioning, which is the focus of this paper, is a promising solution for these limitations. This leads to a higher span-to-depth ratio and reduces potential transverse cracks in the CIP deck which is a major concern for corrosion of the reinforcement. An analytical research was conducted to identify the major parameters influencing the performance of a posttensioned IT bridge system. This was followed by a parametric study to explore the scope of these parameters and specify the design limits in terms of posttensioning stages, timing scenarios, and posttensioning forces. Concrete strength and different methods for estimating time-dependent restraining moments were addressed in this parametric study.  相似文献   

14.
Field tests conducted on a noncomposite steel girder bridge are described. Two separate 36.6 m (120 ft) units, each three-span continuous, were subjected to increasing static loads by means of a trailer and concrete barriers. Results show that the girders acted as partially composite sections in the positive moment region up to the onset of yield. Due to curb participation and the transverse location of the applied load, exterior girders exhibited a higher degree of partially composite action. In the negative moment region, partially composite action was evident only in the exterior girders. As a result of partially composite action and curb participation, the yield load was about 7% higher than predicted. Bearing restraint is shown not to have a significant impact on the behavior of the tested bridges. In addition, the stiffness of the interior girders, as measured under the constant weight of a dump truck, are shown to be virtually unaffected by the heavy trailer loads. More significant changes in girder stiffness were observed between different transverse load positions of the dump truck.  相似文献   

15.
All states in the United States issue special permits for nondivisible and∕or divisible truck overloads exceeding the weight limit of the highway jurisdiction. This causes stress levels higher than those induced by normal truck traffic. The rationality of such overstress levels has not been documented. This paper addresses several aspects of this issue. It presents (1) a method to develop live load models including overload trucks; (2) associated reliability models for assessing structural safety of highway bridges; and (3) proposed permit-load factors for overload checking in the load and resistance factor format. It shows that the proposed overload checking procedure leads to relatively uniform reliability of bridge structures. A sensitivity analysis is also presented here to assure that possible variations of the input data used to prescribe the proposed load factors will not adversely affect bridge safety. The proposed procedure is intended to be used by engineers responsible for checking overload permits. It may be included in evaluation specifications for highway bridges.  相似文献   

16.
It has been argued that the AASHTO LRFD design code for maximum live loads on highway bridges is overly conservative. In an attempt to determine the level of conservativeness, if any, the writers developed a methodology incorporating real-time visual data collection from traffic cameras coupled with structural strain response of girder bridges. Average daily truck traffic along with frequency of multiple presences (same lane as well as adjacent lanes) and lane-wise truck traffic distribution were estimated for a steel-girder highway bridge on I-95 in Delaware. These data compared well with predictions from a Poisson process based model developed for this study. Statistical properties of girder moments in single and multiple presence conditions were determined as well. In this particular example, the girder design moment on the 24.6?foot approach span according to AASHTO specifications was found to be about 3.5 times higher than that estimated from the in-service data.  相似文献   

17.
Tests on twelve bridges (six along Interstate 55 and six along Interstate 70/270 in Illinois) were performed to determine the validity of certain provisions for calculating bearing forces in the load and resistance factor design (LRFD) and the load factor design bridge specifications. The bridges were selected to be typical of Illinois interstate highway bridges and maintain a range of parameters to study. These bridges were instrumented on their beam webs with three strain gauge rosettes installed on each beam to measure shear stresses caused by loads. Static tests and slow moving 8 km/h (5?mi/h) tests with a loaded truck in specified locations were performed. Dynamic tests at highway speeds were also completed. Finite-element models were developed and compared to the test results. The study shows that the LRFD specification procedures closely approximate the shear distribution factors determined by finite-element analysis and testing.  相似文献   

18.
Bridge Damage and Repair Costs from Hurricane Katrina   总被引:1,自引:0,他引:1  
Hurricane Katrina caused significant damage to the transportation system in the Gulf Coast region. The overall cost to repair or replace the bridges damaged during the hurricane is estimated at over $1 billion. This paper describes the observed damage patterns to bridges, including damage attributed to storm surge, wind, impact from debris, scour, and water inundation, as well as examples of repair measures used to quickly restore functionality to the bridges and transportation system. Using the data from the 44 bridges that were damaged, relationships between storm surge elevation, damage level, and repair costs are developed. The analysis reveals that, in general, regions with higher storm surge had more damage, although there were several instances where this was not the case, primarily due to damage resulting from debris impact. It is also shown that a highly nonlinear relationship exists between the normalized repair cost and the damage state. The paper concludes with a brief discussion on the efficacy of using typical seismic design details for mitigating the effects of hurricane loads, and potential design considerations for bridge structures in vulnerable coastal regions.  相似文献   

19.
This paper focuses on the behavior of skewed concrete bridge decks on steel superstructure subjected to truck wheel loads. It was initiated to meet the need for investigating the role of truck loads in observed skewed deck cracking, which may interest bridge owners and engineers. Finite-element analysis was performed for typical skewed concrete decks, verified using in?situ deck strain measurement during load testing of a bridge skewed at 49.1°. The analysis results show that service truck loads induce low strains/stresses in the decks, unlikely to initiate concrete cracking alone. Nevertheless, repeated truck wheel load application may cause cracks to become wider, longer, and more visible. The local effect of wheel load significantly contributes to the total strain/stress response, and the global effect may be negligible or significant, depending on the location. The current design approach estimates the local effect but ignores the global effect. It therefore does not model the situation satisfactorily. In addition, total strain/stress effects due to truck load increase slightly because of skew angle.  相似文献   

20.
Design and Construction of Modern Bamboo Bridges   总被引:6,自引:0,他引:6  
The writers are conducting a comprehensive research program, with the goal to develop modern bamboo structures for buildings and bridges. This paper reports the design, construction, and testing of modern bamboo bridges. Laminated bamboo girders or glubam were developed and verified for satisfactory mechanical performance through full-scale testing. It was demonstrated that the laminated bamboo girders have satisfactory stiffness and load carrying capacity. The use of carbon fiber-reinforced plastics can further enhance the stiffness and capacity of the bamboo girders. Based on the test results and analysis, a 10-m long single lane roadway bridge was designed and constructed, which was the first of its kind in the world. The field tests were carried out using an over loaded two-axel truck with a total weight of 8.6 t which exceeded the given design truckload of 8.0 t. The bridge performed satisfactorily with the midspan deflection corresponding to the critical service loading condition being much smaller than the code required limit. Computer simulation of the field tests shows that the trend of the measured midspan deflection can be reasonably well captured. Examples of other bridge applications are also reported in this paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号