首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
A number of older bridges were constructed with floor systems consisting of a noncomposite concrete slab over steel girders. A potentially economical means of strengthening these floor systems is to connect the existing concrete slab and steel girders with postinstalled shear connectors to permit the development of composite action. This paper presents the results of an experimental investigation of this concept. Five large-scale noncomposite beams were constructed, and four of these were retrofitted with postinstalled shear connectors and tested under static load. The retrofitted composite beams were designed as partially composite with a 30% shear connection ratio. A noncomposite beam was also tested as a baseline specimen. Test results showed that the strength and stiffness of existing noncomposite bridge girders can be increased significantly. Further, excellent ductility of the strengthened partially composite girders was achieved by placing the postinstalled shear connectors near zero-moment regions to reduce slip demand on the connectors. The test results also showed that current simplified design approaches commonly used for partially composite beams in buildings provide good predictions of the strength and stiffness of partially composite bridge girders strengthened using postinstalled shear connectors.  相似文献   

2.
Static Behavior and Theoretical Model of Stud Shear Connectors   总被引:2,自引:0,他引:2  
Stud shear connectors are the most widely used shear connectors in steel-concrete composite beams. The composite action of steel beam and concrete slab is effected by the stud shear properties directly. Thirty push-out tests on stud shear connectors were conducted to investigate the effects of stud diameter and height, concrete strength, stud welding technique, transverse reinforcement, and steel beam type on stud failure mode, load versus slip curve, and the shear bearing capacity. Based on the push-out test results, the stud shear mechanism was analyzed, a new expression of stud load-slip relationship was put forward, and a calculation model of stud shear bearing capacity was proposed taking into account the influences of stud diameter and height, material strength, and elastic modulus. Compared with existing models, the computed shear bearing capacities of the proposed calculation model had a better match with the experimental values.  相似文献   

3.
In the design of new composite steel and concrete bridge beams, the shear connectors are assumed to transmit all of the longitudinal shear forces at the interface between the concrete slab and the steel beam. However, in practice, the forces on the shear connectors are modified by friction resistances at the interface. The effect of friction on the fatigue endurance of shear connectors is first illustrated through a specially developed finite-element analysis procedure. Then a simple mathematical assessment model is proposed that allows for the beneficial effect of friction on the fatigue endurance of shear connectors in composite steel and concrete bridge beams. This procedure can extend the design life of the shear connectors in existing composite bridge beams, as it can be used to estimate their remaining endurance and their remaining strength and, if necessary, to determine the effect of remedial work on increasing the endurance of the shear connectors.  相似文献   

4.
Vibration testing is a well-known practice for damage identification of civil engineering structures. The real modal parameters of a structure can be determined from the data obtained by tests using system identification methods. By comparing these measured modal parameters with the modal parameters of a numerical model of the same structure in undamaged condition, damage detection, localization, and quantification is possible. This paper presents a real-life application of this technique to assess the structural health of the 50-year old bridge of Tilff, a prestressed three-cell box-girder concrete bridge with variable height. A complete ambient vibration survey comprising both vertical accelerations and axial strains has been carried out. The in situ use of optical fiber strain sensors for the direct measurement of modal strains is an original contribution of this work. It is a big step forward in the exploration of modal curvatures for damage identification because the accuracy in calculating the modal curvatures is substantially improved by directly measuring modal strains rather than deriving the modal curvatures from acceleration measurements. From the ambient vibrations, natural frequencies, damping factors, modal displacements and modal curvatures are extracted by the stochastic subspace identification method. These modal parameters are used for damage identification which is performed by the updating of a finite element model of the intact structure. The obtained results are then compared to the inspections performed on the bridge.  相似文献   

5.
This paper discusses the development of an innovative and efficient connector to be used with fiber reinforced polymer (FRP) decks supported by steel girders. A summary is provided detailing various proprietary connectors currently employed by FRP deck manufacturers. The paper then describes the development and experimental testing of a clamped shear stud-type connector. Experimental testing was conducted in two phases. The first phase consisted of individual connector testing. In this phase, several variations of the connector are tested and evaluated for strength, damage development, and overall performance. Results of this phase of testing are used to select a final connection design to be used in the second phase of testing, which consisted of testing a scale model bridge that incorporates several of the proposed connectors. The bridge is subjected to static load tests and the resulting reactions and deflections from these tests are compared with comprehensive finite element models of the system.  相似文献   

6.
Self-centering precast concrete walls have been found to provide excellent seismic resistance. Such systems typically exhibit low energy dissipation, requiring supplementary dissipating components to improve their seismic performance. Mild steel shear connectors can provide an economical energy dissipating element. The design and analysis of steel shear connectors for a new precast wall system has been undertaken. A series of finite-element analyses were conducted to investigate the behavior of different types of connectors. Emerged from these analyses is a oval-shaped connector (O-connector) that provided satisfactory force-displacement behavior and appeared well suited for the new wall system in high seismic regions. An extensive experimental test program was then conducted to verify the performance of the chosen O-connector, which confirmed the expected response with sufficient energy dissipation. The experimental data demonstrated good correlation with the finite-element model developed, providing satisfactory confidence in the finite-element technique used for the development of the different connectors.  相似文献   

7.
An experimental study of composite bridge decks with alternative shear connectors has been performed. The alternative shear connector consists of concrete filled holes located in the webs of grid main bars and friction along the web embedded in the slab, which enables shear transfer between the concrete slab and steel grid. Results of static and fatigue tests on full-scale prototype decks indicated that composite action between the concrete slab and steel grid is maintained well above the service load range even after fatigue loading, the eventual loss of composite action at overload is gradual, failure was controlled by punching shear of the concrete slab and was unaffected by the shear connectors, and no significant change in behavior was observed due to fatigue loading. Further, the measured stress range at the shear connection location would not control the fatigue behavior of the deck in positive bending, and no fatigue cracking of the steel grid was observed in negative bending.  相似文献   

8.
New techniques for both finite-element model updating and damage localization are presented using multiresponse nondestructive test (NDT) data. A new protocol for combining multiple parameter estimation algorithms for model updating is presented along with an illustrative example. This approach allows for the simultaneous use of both static and modal NDT data to perform model updating at the element level. A new damage index based on multiresponse NDT data is presented for damage localization of structures. This index is based on static and modal strain energy changes in a structure as a result of damage. This method depicts changes in physical properties of each structural element compared to its initial state using NDT data. Deficient or potentially damaged structural elements are then selected as the unknown parameters to be updated by parameter estimation. Error function normalization, error function stacking, and multiresponse parameter estimation methods are proposed for using multiple data types for simultaneous stiffness and mass parameter estimation. Also, multiple sets of measurements with various sizes and missing data points can be utilized. This paper uses a laboratory grid model of a bridge deck built at the University of Cincinnati Infrastructure Institute and the corresponding NDT data for validation of the above damage localization and model updating methods. Multiresponse parameter estimation has been utilized to update the stiffness of bearing pads, and both the stiffness and mass of the connections, using static and dynamic NDT data. The static and modal responses of the updated grid model presented a closer match with the NDT data than the responses from the initial model.  相似文献   

9.
The structural condition assessment of highway bridges is largely based on visual observations described by subjective indices, and it is necessary to develop a methodology for an accurate and reliable condition assessment of aging and damaged structures. This paper presents a method using a systematically validated finite-element model for the quantitative condition assessment of a damaged reinforced concrete bridge deck structure, including damage location and extent, residual stiffness evaluation, and load-carrying capacity assessment. In a trial of the method in a cracked bridge beam, the residual stiffness distribution was determined by model updating, thereby locating the damage in the structure. Furthermore, the damage extent was identified through a defined damage index and the residual load-carrying capacity was estimated.  相似文献   

10.
Most studies on shear lag effect in box girders are only concerned about concentrated loads and uniformly distributed loads. In this paper, a finite-element method based on the variational principle is presented to analyze the effect of prestressing on shear lag in box girders. The procedures and main steps are listed to demonstrate how to use the proposed FEM, which is verified by the analytical method and the numerical examples. The shear lag effect in box girders with different types of support conditions under prestressing is analyzed in detail. The shear lag effect in box girders under prestressing is more apparent than that under uniformly distributed loads or vertical concentrated loads. The values and distributions of shear lag coefficients are relate to the anchorage locations of prestressing and the distributions of internal forces along the girder under the combined uniformly distributed load and prestressing. Among the conclusions of the study is that negative shear lag under the uniformly distributed load and prestressing may occur both at the midspan of a simply supported box girder and at the fixed end of a cantilever box girder.  相似文献   

11.
A two-step probabilistic structural health monitoring approach is used to analyze the Phase II experimental benchmark studies sponsored by the IASC–ASCE Task Group on Structural Health Monitoring. This study involves damage detection and assessment of the test structure using experimental data generated by hammer impact and ambient vibrations. The two-step approach involves modal identification followed by damage assessment using the pre- and postdamage modal parameters based on the Bayesian updating methodology. An Expectation–Maximization algorithm is proposed to find the most probable values of the parameters. It is shown that the brace damage can be successfully detected and assessed from either the hammer or ambient vibration data. The connection damage is much more difficult to reliably detect and assess because the identified modal parameters are less sensitive to connection damage, allowing the modeling errors to have more influence on the results.  相似文献   

12.
Extensive research conducted over the past eight years in Canada has led to a concrete deck slab of girder bridges that can be entirely free of any tensile reinforcement. This slab, known as the steel-free deck slab, derives its strength from its internal arching action, which is harnessed longitudinally by making the slab composite with the girders, and transversely by restraining the relative transverse movement of the top flanges of adjacent girders. Two steel-free deck slabs have already been built, in which the transverse confinement is provided by welding steel straps to the girders. This paper presents test results on two other kinds of transverse confining systems, which are applicable to both steel and concrete girders. It is shown that the steel-free deck slab, in addition to being more durable than slabs with steel reinforcement, can also prove to be more economical.  相似文献   

13.
楼板的存在对梁柱节点的局部受力影响显著, 在梁柱节点设计中, 若仅仅把楼板与钢梁的组合效应作为安全储备, 可能会产生结构由"强柱弱梁"转变成"强梁弱柱"的颠覆性结果, 因此忽略混凝土楼板对节点承载力及刚度的影响是造成破坏的重要原因.基于已完成的带楼板的T型梁柱节点低周往复荷载试验, 建立了非线性有限元分析模型.为了更加全面地了解钢梁-楼板组合节点的工作机制, 进一步补充完善试验研究的不足, 模型考虑了楼板与钢梁之间的栓钉连接以及材料非线性等因素, 模型的计算结果与试验结果具有高吻合度.在此基础上, 通过有限元参数分析, 详细分析了构件尺寸效应、轴压比、楼板厚度、楼板强度和柱宽厚比共五个参数对考虑楼板影响的外环板式梁柱节点抗震性能的影响.结果表明尺寸效应、轴压比对梁端抗弯承载力及刚度的影响小到可以忽略, 楼板厚度、楼板强度和柱宽厚比对梁端抗弯承载力有显著影响.结合理论分析进一步提出了考虑楼板影响的外环板式梁柱节点梁端抗弯承载力计算公式, 通过对比公式计算结果与试验、有限元分析结果可得, 该计算公式可较好的计算带楼板外环板式梁柱节点梁端抗弯承载力.   相似文献   

14.
This paper presents the results of an experimental study to investigate the role of each layer of reinforcement on the behavior of concrete bridge deck slabs reinforced with fiber-reinforced polymer (FRP) bars. Four full-scale concrete deck slabs of 3,000?mm length by 2,500?mm width and 200?mm depth were constructed and tested in the laboratory. One deck slab was reinforced with top and bottom mats of glass FRP bars. Two deck slabs had only a bottom reinforcement mat with different reinforcement ratios in the longitudinal direction, while the remaining deck slab was constructed with plain concrete without any reinforcement. The deck slabs were supported on two steel girders spaced at 2,000?mm center to center and were tested to failure under a central concentrated load. The three reinforced concrete slabs had very similar behavior and failed in punching shear mode at relatively high load levels, whereas the unreinforced slab behaved differently and failed at a very low load level. The experimental punching capacities of the reinforced slabs were compared to the theoretical predictions provided by ACI 318-05, ACI 440.1R-06, and a model proposed by the writers. The tests on the four deck slabs showed that the bottom transverse reinforcement layer has the major influence on the behavior and capacity of the tested slabs. In addition, the ACI 318-05 design method slightly overestimated the punching shear strength of the tested slabs. The ACI 440.1R-06 design method yielded very conservative predictions whereas the proposed method provided reasonable yet conservative predictions.  相似文献   

15.
Light gauge metal sheeting is often utilized in the building and bridge industries for concrete formwork. Although the in-plane stiffness and strength of the metal forms are commonly relied upon for stability bracing in buildings, the forms are generally not considered for bracing in steel bridge construction. The primary difference between the forming systems in the two industries is the method of connection between the forms and girders. In bridge construction, an eccentric support angle is incorporated into the connection details to achieve a uniform slab thickness along the girder length. While the eccentric connection is a benefit for slab construction, the flexible connection limits the amount of bracing provided by the forms. This paper presents results from the first phase of a research study investigating the bracing behavior of metal bridge deck forms. Shear diaphragm tests were conducted to determine the shear stiffness and strength of bridge deck forms, and modified connection details were developed that substantially improve the bracing behavior of the forms. The measured stiffness and strength of diaphragms with the modified connection often met or exceeded the values of diaphragms with conventional noneccentric connections. The experimental results for the diaphragms with the modified connection details dramatically improve the potential for bracing of steel bridge girders by metal deck forms.  相似文献   

16.
An important objective of health monitoring systems for civil infrastructures is to identify the state of the structure and to detect the damage when it occurs. System identification and damage detection, based on measured vibration data, have received considerable attention recently. Frequently, the damage of a structure may be reflected by a change of some parameters in structural elements, such as a degradation of the stiffness. Hence it is important to develop data analysis techniques that are capable of detecting the parametric changes of structural elements during a severe event, such as the earthquake. In this paper, we propose a new adaptive tracking technique, based on the least-squares estimation approach, to identify the time-varying structural parameters. In particular, the new technique proposed is capable of tracking the abrupt changes of system parameters from which the event and the severity of the structural damage may be detected. The proposed technique is applied to linear structures, including the Phase I ASCE structural health monitoring benchmark building, and a nonlinear elastic structure to demonstrate its performance and advantages. Simulation results demonstrate that the proposed technique is capable of tracking the parametric change of structures due to damages.  相似文献   

17.
In this study, live load distribution formulas for the girders of single-span integral abutment bridges (IABs) are developed. For this purpose, two and three dimensional finite-element models (FEMs) of several IABs are built and analyzed. In the analyses, the effects of various superstructure properties such as span length, number of design lanes, prestressed concrete girder size, and spacing as well as slab thickness are considered. The results from the analyses of two and three dimensional FEMs are then used to calculate the live load distribution factors (LLDFs) for the girders of IABs as a function of the above mentioned parameters. The LLDFs for the girders are also calculated using the AASHTO formulas developed for simply supported bridges (SSBs). The comparison of the analyses results revealed that LLDFs for girder moments and exterior girder shear of IABs are generally smaller than those calculated for SSBs using AASHTO formulas especially for short spans. However, AASHTO LLDFs for interior girder shear are found to be in good agreement with those obtained for IABs. Consequently, direct live load distribution formulas and correction factors to the current AASHTO live load distribution equations are developed to estimate the girder live load moments and exterior girder live load shear for IABs with prestressed concrete girders. It is observed that the developed formulas yield a reasonably good estimate of live load effects in prestressed concrete IAB girders.  相似文献   

18.
The AASHTO LRFD Bridge Design Specifications state that the spacing between the shear connectors for steel girders should not exceed 610 mm (24 in.). This decision was made based on research conducted more than three decades ago. The goal of this research is to investigate the possibility of extending this limit to 1,220 mm (48 in.) for stud clusters used with full-depth precast concrete deck panels installed on steel girders. This paper presents the history of the 610 mm (24 in.) limit, various formulas developed to calculate fatigue and design capacity for stud clusters and concerns about extending the current LRFD limit. This paper also presents information on the first phase of the experimental investigation, which is conducted on push-off specimens to validate extending the limit to 1,220 mm (48 in.).  相似文献   

19.
Two frequency response correlation criteria, namely the global shape correlation (GSC) function and the global amplitude correlation (GAC) function, are established tools to quantify the correlation between predictions from a finite-element (FE) model and measured data for the purposes of FE model validation and updating. This paper extends the application of these two correlation criteria to structural health monitoring and damage detection. In addition, window-averaged versions of the GSC and GAC, namely WAIGSC and WAIGAC, are defined as effective damage indicators to quantify the change in structural response. An integrated method of structural health monitoring and damage assessment, based on the correlation functions and radial basis function neural networks, is proposed and the technique is applied to a bookshelf structure with 24 measured responses. The undamaged and damaged states, single and multiple damage locations, as well as damage levels, were successfully identified in all cases studied. The ability of the proposed method to cope with incomplete measurements is also discussed.  相似文献   

20.
Local effects on the shear connection of composite girders induced by longitudinal actions such as the anchorages of prestressing cables, concrete shrinkage, or a uniform thermal action on the slab are analyzed. Closed-form solutions are obtained by using the simple model of a composite beam with a linearly elastic shear connection. Successively, by considering the limit scheme of an infinitely long beam, very simple formulas are derived permitting evaluation of the peak value and extension of the interface shear force distribution induced by the longitudinal actions. Numerical applications are carried out to show the effectiveness of the proposed formulas for a wide range of the shear connection stiffness and for longitudinal forces applied both along the beam axis and at the beam end.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号