首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To produce a new red pigment for Japanese porcelains, some hematite (α-Fe2O3) powders produced by different methods were investigated by mixing them with lead-free frit powders and firing them on white porcelain plates at 800°C. Commercial hematite powders and uniform α-Fe2O3 powders 155 and 53 nm in diameter which were prepared using conventional- and microwave-hydrothermal reactions, respectively, were used as sources of red pigments. The morphology and dispersion of the above α-Fe2O3 powders were found to have a significant effect on the tone of red color for porcelain pigment.  相似文献   

2.
Thermal reactions in 93% Al2O3-7% MgO and 95.8% Al2O3-4.2% MgO gels seeded with α-Al2O3, MgAl2O4, α-Fe2O3, and SiO2, sols were investigated by differential thermal analysis to determine the extent of nucleation catalysis of solid-state reactions. Seeding with α-Al2O3 lowered the α-Al2O3 crystallization temperature in these xerogels by 100° to 150°C. Spinel seeds have much less effect on the γ-α transition, and α-Fe2O3 and SiO2 seeds do not affect it significantly. Isostructural seeding of gels may therefore permit lower ceramic processing temperatures.  相似文献   

3.
Subsolidus equilibrium relations in a portion of the system Li2O-Fe2O3-Al2O3 in the temperature range 500° to 1400°C. have been determined near po2 = 0.21. Of particular interest in this system is the LiFe5O8-LiAl5O8 join, which shows complete solid solution above 1180°C. Below this temperature the solid solution exsolves into two spinel phases. At 600°C. approximately 15 mole % of each compound is soluble in the other. The high-temperature solid solution and the low-temperature exsolution dome extend into the ternary system from the 1:5 join. There is no appreciable crystalline solubility of LiFeO2 or of α-Fe2O3 in LiFe5O8. An attempt to confirm HFe5O8 as the correct formulation of the magnetic ferric oxide "γ-Fe2O3" was inconclusive, but in the absence of positive evidence, the retention of γ-Fe2O3 is recommended. All the metallic oxides of the Group IV elements increase the temperature of the monotropic conversion of -γ-Fe2O3 to α-Fe2O3. Silica and thoria have a greater effect on this conversion than does titania or zirconia.  相似文献   

4.
Synthesis of monodispersed nanophase α-Fe2O3 (hematite) powder to be used as a red pigment in porcelains was investigated using microwave-hydrothermal and conventional-hydrothermal reactions using 0.018 M FeCl3·6H2O and 0.01 M HCl solutions at 100°–160°C. Acicular and yellow β-FeOOH (akaganite) particles 300 nm in length and 40 nm in thickness were dominantly formed at 100°C after 2–3 h, while spherical α-Fe2O3 particles 100–180 nm in diameter were preferentially formed after 13 h using a conventional-hydrothermal reaction. However, a microwave-hydrothermal reaction at 100°C led to monodispersed and red α-Fe2O3 particles 30–66 nm in diameter after 2 h without the formation of β-FeOOH particles. In this paper, the effect of microwave radiation during hydrothermal treatment at 100°–160°C on the formation yield, kinetics, morphology, phase type, and color of α-Fe2O3 was investigated.  相似文献   

5.
Since the difference between oxygen-ion and cation diffusion coefficients is greater for α-Cr2O3 than for α-Fe2O3 or α-Al2O3, a study of initial-sintering kinetics was undertaken to show unequivocally which species is rate controlling. Fine powders of α-Cr2O3, obtained by thermal decomposition of reagent-grade (NH4)2Cr2O7, were lightly compacted and their isothermal rates of shrinkage were determined between 1050° and 1300°C. Resultant data follow volume-diffusion sintering models, and calculated diffusion coefficients agree with, those measured for oxygen ions in α-Cr2O3. There is little evidence that oxygen diffusion along grain boundaries becomes so enhanced that chromium ions are left in control of the process.  相似文献   

6.
High-quality alumina ceramics were fabricated by a hot pressing with MgO and SiO2 as additives using α-Al2O3-seeded nanocrystalline γ-Al2O3 powders as the raw material. Densification behavior, microstructure evolution, and mechanical properties of alumina were investigated from 1250°C to 1450°C. The seeded γ-Al2O3 sintered to 98% relative density at 1300°C. Obvious grain growth was observed at 1400°C and plate-like grains formed at 1450°C. For the 1350°C hot-pressed alumina ceramics, the grain boundary regions were generally clean. Spinel and mullite formed in the triple-grain junction regions. The bending strength and fracture toughness were 565 MPa and 4.5 MPa·m1/2, respectively. For the 1300°C sintered alumina ceramics, the corresponding values were 492 MPa and 4.9 MPa·m1/2.  相似文献   

7.
Addition of α-Fe2O3 seed particles to alkoxide-derived boehmite sols resulted in a 10-fold increase in isothermal rate constants for the transformation of γ- to α-Al2O3. Changes in porosity and surface area with sintering temperature showed no effect of seeding on coarsening of the transition alumina gels, but the 200-fold decrease in surface area associated with transformation to α-Al2O3 occurred ∼ 100°C lower in seeded gels compared with unseeded materials. As a result of high nucleation frequency and reduced microstructure coarsening, fully transformed seeded alumina retained specific surface areas >22 m2/g and exhibited narrow pore size distributions, permitting development of fully dense, submicrometer α-Al2O3 at ∼ 1200°C.  相似文献   

8.
Particles of BaFe12O12 were prepared by chemical coprecipitation; their magnetic properties were studied. A coercive force of 6000 Oe, one of the highest reported for isotropic BaFe12O19, was obtained. X-ray and Moessbauer studies were conducted to examine the mechanism of formation. Superparamagnetic α-Fe2O3 was present during synthesis. Ferrites were sintered from these precipitated powders by both the usual method and a hot-press-forging method. The observed magnetic characteristics result from partial orientation of defect-free single-domain coprecipitated powders.  相似文献   

9.
ZrO2–Al2O3 nanocrystalline powders have been synthesized by oxidizing ternary Zr2Al3C4 powders. The simultaneous oxidation of Al and Zr in Zr2Al3C4 results in homogeneous mixture of ZrO2 and Al2O3 at nanoscale. Bulk nano- and submicro-composites were prepared by hot-pressing as-oxidized powders at 1100°–1500°C. The composition and microstructure evolution during sintering was investigated by XRD, Raman spectroscopy, SEM, and TEM. The crystallite size of ZrO2 in the composites increased from 7.5 nm for as-oxidized powders to about 0.5 μm at 1500°C, while the tetragonal polymorph gradually converted to monolithic one with increasing crystallite size. The Al2O3 in the composites transformed from an amorphous phase in as oxidized powders to θ phase at 1100°C and α phase at higher temperatures. The hardness of the composite increased from 2.0 GPa at 1100°C to 13.5 GPa at 1400°C due to the increase of density.  相似文献   

10.
ZrO2–Al2O3 nanocomposite particles were synthesized by coating nano-ZrO2 particles on the surface of Al2O3 particles via the layer-by-layer (LBL) method. Polyacrylic acid (PAA) adsorption successfully modified the Al2O3 surface charge. Multilayer coating was successfully implemented, which was characterized by ξ potential, particle size. X-ray diffraction patterns showed that the content of ZrO2 in the final powders could be well controlled by the LBL method. The powders coated with three layers of nano-ZrO2 particles, which contained about 12 wt% ZrO2, were compacted by dry press and cold isostatically pressed methods. After sintering the compact at 1450°C for 2 h under atmosphere, a sintered body with a low pore microstructure was obtained. Scanning electron microscopy micrographs of the sintered body indicated that ZrO2 was well dispersed in the Al2O3 matrix.  相似文献   

11.
An upper limit to the solubility of iron in rutile was determined in the range 800° to 1350°C by X-ray examination of mixtures of TiO2 and α-Fe2O3 powders reacted in 1 atm oxygen pressure and quenched to room temperature. The results indicate somewhat lower solubilities than would be inferred from previous measurements; the solubility ranges from 3 cation % iron at 1350°C to 1% at 800°C. There is no detectable change in rutile lattice parameters with iron content up to the limit of solubility.  相似文献   

12.
Manganese ferrite and α-Fe2O3 particles were precipitated within silicate melt systems to produce very unusual magnetic properties. Assemblies of particles of both kinds behaved super-paramagnetically when the particle size was small enough. As the particle size was increased, the magnetic properties of the ferrite system increased, but those of the α-Fe2O3 system decreased; the latter is expected from Néel's theory of a net spontaneous magnetic moment created by uncompensated magnetic sublattices at very small particle sizes. Liquid-in-liquid phase separation was pronounced in the manganese ferrite-glass systems, which may have influenced the precipitation behavior. Room-temperature initial mass susceptibilities were as high as 2 × 10 −2 cgs, and specific magnetizations as high as 26 gauss/g were observed. Precipitation of α-Fe2O3 particles exhibiting super-paramagnetic behavior was possible only with very low-viscosity melts. Initial mass susceptibility values changed by as much as a factor of 30 between 296° and 77°K.  相似文献   

13.
(In0.67Fe0.33)2O3 with the bixbyite structure was synthesized via 28 GHz microwave irradiation, using multimode microwave heating equipment. Indium sesquioxide strongly absorbs 28 GHz microwaves, and this strong coupling with microwave energy can be used to drive a reaction with iron sesquioxide. A mixture of In2O3 and α-Fe2O3 powders (In:Fe ratio of 2:1) was irradiated with microwaves at a frequency of 28 GHz. The mixture was heated to 1400°C during the microwave irradiation. The formation of a solid solution was completed within a minute, which indicated a drastic enhancement of the reaction rate. Scanning electron microscopy revealed remarkable grain growth under microwave irradiation.  相似文献   

14.
Fine-particle beta sodium ferrite (β-NaFeO2), rather than α-Fe2O3, may be responsible for superparamagnetic behavior in a glass of composition (in mole fractions) 0.37Na2O-0.26Fe2O3-0.37SiO2. The 700°C isothermal section of the phase diagram of the Na2O-Fe2O3-SiO2 system is given, showing a three-phase field bounded by Na2SiO3-NaFeO2-Fe2O3; there is no evidence for the existence (at 700°C) of compounds of molar composition 6Na2O-4Fe2O3-5SiO2 or 2Na2O-Fe2O3-SiO2. The Moessbauer spectrum of β-NaFeO2 has an internal magnetic field of 487 kOe at room temperature.  相似文献   

15.
Nanocrystalline pure α-Fe2O3 powder, with an average particle size of 35 nm, has been synthesized by using an aqueous solution-based synthetic route. DC electrical resistivity of the synthesized material was measured with respect to temperature by the two-probe method from 28° to 225°C. Room temperature resistivity of the nanopowder was ∼108Ω·cm. Magnetic hysteresis measurement revealed that the synthesized α-Fe2O3 nanopowder exhibited ferromagnetic behavior at room temperature. The hysteretic features are high saturation magnetization of 5.1 emu/g, high remanence of 2.2 emu/g, and coercivity of 200.5 Oe.  相似文献   

16.
Novel microcomposite powders, consisting of inert cores (αAL-Al2O3) surrounded by reactive cement-based coatings (CaAl2O4), were synthesized by a modified Pechini process. The evolution of the crystalline CaAl2O4 phase during calcination was studied using multiple analytical techniques, including DRIFTS,13C and 27AlMAS FT-NMR, and XRD, for both pure CaAl2O4 and CaAl2O4-coated Al2O3 precursor powders. In both powders, decomposition proceeded via hydrocarbon chain scission and removal of ester groups at low temperatures ( T < 450°C), followed by the formation of inorganic carbonates at higher temperatures ( T > 450°C). These decomposition processes were accelerated by the underlying Al2O3 cores. Transmission electron microscopy (TEM) of the fully calcined powders showed that the inert αAL-Al2O3 particles were surrounded by relatively uniform CaAl2O4 coatings ranging in thickness from approximately 10 to 100 nm.  相似文献   

17.
Stoichiometric mullite (71.38 wt% Al2O3-28.17 wt% SiO2) and 80 wt% Al2O3-20 wt% SiO2 gels were prepared by the single-phase and/or diphasic routes. Dense sintered bodies were prepared from both sets of gels in the Al2O3-SiO2 system. Apparent densities of 96% and 97% of theoretical density were measured for the diphasic (using two sols) mullite samples sintered at 1200° and 1300°C for 100 min, respectively; this compared with 85% and 94% for the single-phase xerogels under the same conditions, and to much lower values for mullite prepared from conventional mixed powders. The microstructure of the mullite pellets from diphasic xerogel precursors is also considerably finer.  相似文献   

18.
The potassium ions in potassium β-ferrite ((1 + x)K2O ·11Fe2O3) crystals were exchanged with Na+, Rb+, Cs+, Ag+, NH4+, and H3O+ in molten nitrates or in concentrated H2SO4. On the other hand, spinel and hexagonal ferrites were formed by soaking the crystals in the melt of divalent salts. The crystals of K+, Rb+, and Cs+β-ferrites decomposed to form α-Fe2O3 at high temperatures of 800° to 1100°C. In addition, H3O+, NH4+, and Ag+β-ferrites decomposed to form α-Fe2O3 at relatively low temperatures of 350° to 650°C, in accordance with the stabilities of the inserted ions. The electrical properties of some β-ferrites were measured.  相似文献   

19.
A Nd-doped HfO2-Y2O3 ceramic having excellent transmittance was synthesized by HIPing, using high-purity powders (>99.99 wt%) of Y2O3, Nd2O3, and HfO2. The mixed powder compacts of these powders were sintered at 1650°C for 1 h under vacuum and HIPed at 1700°C for 3 h under 196 MPa of Ar. The specimen after HIPing consisted of uniform grains measuring about 30 μm and having pore-free structure. The optical transmittance of 1 at.% Nd-doped 2.6 mol% HfO2-Y2O3 ceramics ranging between visible and infrared wavelength was almost equivalent or superior to that of a Nd:Y2O3 single crystal grown by the Verneuil method.  相似文献   

20.
A fine, uniform A12O3-SiO2 powder was prepared by heterocoagulation of narrow Al2O3 and SiO2 powders. This composite powder was dispersed, compacted, and fired in air at 900° to 1580°C for 1 to 13 h. Full density was achieved at 1550°C with the formation of a mullite phase. Relative densities of 83% and 98% (0.3 μm grain size) were measured for samples sintered at 1200°C for 13 h and at 1400°C for 1 h, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号