首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 56 毫秒
1.
詹娟 《微电子学》1997,27(5):323-325
利用硅栅自对准分离子注入工艺制备了SOI/SDB CMOS器件,讨论了该器件的短沟道效应、“Kink”效应以及SOI硅膜厚度对NMOS、PMOS管参数的影响。  相似文献   

2.
本文报道了薄膜SIMOX/SOI材料上全耗尽MOSFET的制备情况,并对不同硅膜厚度和不同背面栅压下的器件特性进行了分析和比较.实验结果表明,全耗尽器件完全消除了"Kink"效应,低场电子迁移率典型值为620cm2/V·s,空穴迁移率为210cm2/V·s,泄漏电流低于10-12A;随着硅膜厚度的减簿,器件的驱动电流明显增加,亚阈值特性得到改善;全耗尽器件正、背栅之间有强烈的耦合作用,背表面状况可以对器件特性产生明显影响.该工作为以后薄膜全耗尽SIMOX/SOI电路的研制与分析奠定了基础.  相似文献   

3.
本文简要介绍短沟道CMOS/SIMOX器件与电路的研制。在自制的SIMOX材料上成功地制出了沟道长度为1.0μm的高性能全耗尽SIMOX器件和19级CMOS环形振荡器。N管和P管的泄漏电流均小于1×10-12A/μm,在电源电压为5V时环振电路的门延迟时间为280ps。  相似文献   

4.
在表层硅厚度为180um的SIMOX材料上,用局部增强氧化隔离等工艺研制了沟道长度为2.5μm的全耗尽CMOS/SIMOX器件。该工艺对边缘漏电的抑制及全耗尽结构对背沟漏电的抑制降低了器件的整体漏电水平,使PMCOS和NMOS的漏电分别达到3.O×10-11A/μm和2.2×10-10A/μm。5V时,例相器的平均延迟时间达6ns。  相似文献   

5.
硅基GaAs/GaAlAs平面光波导的研究   总被引:1,自引:0,他引:1  
分析了金属有机化合物化学气相淀积(MOCVD)GaAs/GaAsAl/GaAs/Si材料结构的性能,用MOCVD法地硅衬底上生长了GaAs/GaAsAl/GaAs材料,并用这种材料制备了平面光波导样品,测定了1.3μm,单模激光的传输损耗小于0.65dB/cm。  相似文献   

6.
张兴  石涌泉  路泉  黄敞 《半导体学报》1995,16(11):857-861
本文较为详细地介绍了能有效地改善SOS材料结晶质量的双固相外延DSPE工艺,给出了优化的工艺条件.通过比较用DSPE及普通SOS材料制作的CMOS/SOS器件和电路的特性可以看出,采用DSPE工艺能显著改善SOS材料的表面结晶质量,应用DSPE工艺在硅层厚度为350nm的SOS材料上成功地研制出了沟道长度为1μm的高性能CMOS/SOS器件和电路,其巾NMOSFET及PMOSFET的泄漏电流分别为2.5pA和1.5pA,19级CMOS/SOS环形振荡器的单级门延迟时间为320ps.  相似文献   

7.
用MOCVD生长发射波长为808nm的ALGaAs/GaAs量子阱激光器材料。通过在激光器材料的波导中加入多量子势垒(MQB)层,有效地限制电子在阱内的复合以及高能电子溢出阱外,从而降低了激光器的阈值电流,提高了它的特征温度。增加了MQB后,器件的阈值电流密度I_(th)从原来的400~600A/cm ̄2下降到300~400A/cm ̄2,特征温度从160K提高到210K。  相似文献   

8.
采用计算机控制的快速辐射加热、超低压CVD(RRH/VLP-CVD)方法生长了Si/Si0.7Ge0.3/Sip-型调制掺杂双异质结构.研究了该结构的输运性质,其空穴霍尔迁移率高达300cm2/V·s(300K,薄层载流于浓度ps为2.6e13cm-2)和8400cm2/V·s(77K,ps为1.1e13cm-2).  相似文献   

9.
薄膜全耗尽SOI门阵列电路设计与实现   总被引:1,自引:1,他引:0  
魏丽琼  张兴 《电子学报》1996,24(2):46-49
在Daisy系统上设计出通用性强、使用方便的SOI门阵列母版及门阵列电路,并采用1.5umCMOS/SOI工艺在薄膜全耗尽SIMOX材料上得以实现,其中包括多种分频器电路和环形振荡器,环振可工作在2.5V,门延误时间在5V时为430ps。  相似文献   

10.
脉冲激光沉积铌酸锶钡铁电薄膜及其性能表征   总被引:3,自引:0,他引:3  
利用脉冲激光沉积(PLD)技术在MgO、LSCO/MgO衬底上在位制备了铌酸锶钡(SBN)铁电薄膜,发现SBN薄膜在MgO、LSCO/MgO衬底上均呈(001)择优取向。用扫描电子显微镜(SEM)和原子力显微镜(AFM)表明SBN薄膜的晶粒细小致密,铁电微畴尺寸约为200nm。SBN薄膜的剩余极化强度为18.6μC/cm2,矫顽场为22.3kV/cm。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号