The advances in reinforcement learning have recorded sublime success in various domains. Although the multi-agent domain has been overshadowed by its single-agent counterpart during this progress, multi-agent reinforcement learning gains rapid traction, and the latest accomplishments address problems with real-world complexity. This article provides an overview of the current developments in the field of multi-agent deep reinforcement learning. We focus primarily on literature from recent years that combines deep reinforcement learning methods with a multi-agent scenario. To survey the works that constitute the contemporary landscape, the main contents are divided into three parts. First, we analyze the structure of training schemes that are applied to train multiple agents. Second, we consider the emergent patterns of agent behavior in cooperative, competitive and mixed scenarios. Third, we systematically enumerate challenges that exclusively arise in the multi-agent domain and review methods that are leveraged to cope with these challenges. To conclude this survey, we discuss advances, identify trends, and outline possible directions for future work in this research area.
相似文献In recent trends, artificial intelligence (AI) is used for the creation of complex automated control systems. Still, researchers are trying to make a completely autonomous system that resembles human beings. Researchers working in AI think that there is a strong connection present between the learning pattern of human and AI. They have analyzed that machine learning (ML) algorithms can effectively make self-learning systems. ML algorithms are a sub-field of AI in which reinforcement learning (RL) is the only available methodology that resembles the learning mechanism of the human brain. Therefore, RL must take a key role in the creation of autonomous robotic systems. In recent years, RL has been applied on many platforms of the robotic systems like an air-based, under-water, land-based, etc., and got a lot of success in solving complex tasks. In this paper, a brief overview of the application of reinforcement algorithms in robotic science is presented. This survey offered a comprehensive review based on segments as (1) development of RL (2) types of RL algorithm like; Actor-Critic, DeepRL, multi-agent RL and Human-centered algorithm (3) various applications of RL in robotics based on their usage platforms such as land-based, water-based and air-based, (4) RL algorithms/mechanism used in robotic applications. Finally, an open discussion is provided that potentially raises a range of future research directions in robotics. The objective of this survey is to present a guidance point for future research in a more meaningful direction.
相似文献Reinforcement learning from expert demonstrations (RLED) is the intersection of imitation learning with reinforcement learning that seeks to take advantage of these two learning approaches. RLED uses demonstration trajectories to improve sample efficiency in high-dimensional spaces. RLED is a new promising approach to behavioral learning through demonstrations from an expert teacher. RLED considers two possible knowledge sources to guide the reinforcement learning process: prior knowledge and online knowledge. This survey focuses on novel methods for model-free reinforcement learning guided through demonstrations, commonly but not necessarily provided by humans. The methods are analyzed and classified according to the impact of the demonstrations. Challenges, applications, and promising approaches to improve the discussed methods are also discussed.
相似文献This article is about deep learning (DL) and deep reinforcement learning (DRL) works applied to robotics. Both tools have been shown to be successful in delivering data-driven solutions for robotics tasks, as well as providing a natural way to develop an end-to-end pipeline from the robot’s sensing to its actuation, passing through the generation of a policy to perform the given task. These frameworks have been proven to be able to deal with real-world complications such as noise in sensing, imprecise actuation, variability in the scenarios where the robot is being deployed, among others. Following that vein, and given the growing interest in DL and DRL, the present work starts by providing a brief tutorial on deep reinforcement learning, where the goal is to understand the main concepts and approaches followed in the field. Later, the article describes the main, recent, and most promising approaches of DL and DRL in robotics, with sufficient technical detail to understand the core of the works and to motivate interested readers to initiate their own research in the area. Then, to provide a comparative analysis, we present several taxonomies in which the references can be classified, according to high-level features, the task that the work addresses, the type of system, and the learning techniques used in the work. We conclude by presenting promising research directions in both DL and DRL.
相似文献Nowadays, Artificial Intelligence (AI) is growing by leaps and bounds in almost all fields of technology, and Autonomous Vehicles (AV) research is one more of them. This paper proposes the using of algorithms based on Deep Learning (DL) in the control layer of an autonomous vehicle. More specifically, Deep Reinforcement Learning (DRL) algorithms such as Deep Q-Network (DQN) and Deep Deterministic Policy Gradient (DDPG) are implemented in order to compare results between them. The aim of this work is to obtain a trained model, applying a DRL algorithm, able of sending control commands to the vehicle to navigate properly and efficiently following a determined route. In addition, for each of the algorithms, several agents are presented as a solution, so that each of these agents uses different data sources to achieve the vehicle control commands. For this purpose, an open-source simulator such as CARLA is used, providing to the system with the ability to perform a multitude of tests without any risk into an hyper-realistic urban simulation environment, something that is unthinkable in the real world. The results obtained show that both DQN and DDPG reach the goal, but DDPG obtains a better performance. DDPG perfoms trajectories very similar to classic controller as LQR. In both cases RMSE is lower than 0.1m following trajectories with a range 180-700m. To conclude, some conclusions and future works are commented.
相似文献Analyzing videos and images captured by unmanned aerial vehicles or aerial drones is an emerging application attracting significant attention from researchers in various areas of computer vision. Currently, the major challenge is the development of autonomous operations to complete missions and replace human operators. In this paper, based on the type of analyzing videos and images captured by drones in computer vision, we have reviewed these applications by categorizing them into three groups. The first group is related to remote sensing with challenges such as camera calibration, image matching, and aerial triangulation. The second group is related to drone-autonomous navigation, in which computer vision methods are designed to explore challenges such as flight control, visual localization and mapping, and target tracking and obstacle detection. The third group is dedicated to using images and videos captured by drones in various applications, such as surveillance, agriculture and forestry, animal detection, disaster detection, and face recognition. Since most of the computer vision methods related to the three categories have been designed for real-world conditions, providing real conditions based on drones is impossible. We aim to explore papers that provide a database for these purposes. In the first two groups, some survey papers presented are current. However, the surveys have not been aimed at exploring any databases. This paper presents a complete review of databases in the first two groups and works that used the databases to apply their methods. Vision-based intelligent applications and their databases are explored in the third group, and we discuss open problems and avenues for future research.
相似文献