首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 56 毫秒
1.
基于高阶累积量(HOC)的自适应滤波器能够滤除高斯噪声或其它具有对称概率分布函数的噪声,其解法一般采用的是梯度搜索法,但是梯度搜索过程难以避免局部收敛而且计算复杂.粒子群优化算法(PSO)具有算法简洁,易于实现,且不需要梯度信息等优势.使用粒子群优化算法求解高阶累积量自适应滤波器系数优化问题,为滤波器参数的优化提供了一种新的思路.仿真结果表明,使用PSO优化算法求解自适应滤波器系数能获得更高的精度.同时PSO算法受系统跃变的影响较小,因此它在求解非平稳过程模型系统时具有一定的优势.  相似文献   

2.
针对神经网络自适应滤波器易于陷入局部极小的缺陷,采用抑制局部最优的粒子群算法优化神经网络的权系数,设计了基于改进粒子群算法训练的三层神经网络的自适应滤波器,并将其应用于自适应噪声抵消器.仿真表明,该系统与传统自适应噪声抵消系统相比具有很好的噪声抵消能力,信噪比大大提高.  相似文献   

3.
基于反馈策略的自适应粒子群优化算法   总被引:12,自引:0,他引:12  
为了克服常规粒子群优化(SPSO)算法在多峰函数寻优应用中容易出现早熟的缺点,提出了一种基于反馈策略的自适应粒子群优化(APSO)算法.考虑到进化过程中群体多样性损失过快,采用种群分布熵和平均粒距两个种群多样性参数,来均衡算法的勘探和开发能力.基于惯性权值随种群多样性变化而变化的动态分析,建立了惯性权值与平均粒距之间的线性函数关系,并将该函数关系融入到APSO算法中.测试结果表明,与常规粒子群优化算法相比,该算法在多峰函数寻优时,成功率和精确度都有显著提高,且全局收敛速度快;在求解异或(XOR)分类问题时成功概率提高,收敛速度加快,APSO算法对神经网络的训练更加有效.  相似文献   

4.
粒子群优化算法是根据鸟群觅食过程中的迁徙和群集模型而提出的用于解决优化问题的一类新兴的随机优化算法.介绍了PSO算法的基本原理和一些改进措施及PSO算法的应用,并对其将来的发展进行了展望.  相似文献   

5.
根据粒子群算法可以搜索全局最优的特点,提出一种新的基于粒子群算法优化模糊隶属函数,从而对带有脉冲噪声图像进行模糊中值滤波的方法.该方法给出一个新的模糊熵定义,采用改进粒子群优化算法寻求隶属函数的最优参数,依照最大熵准则将图像变换到模糊域,然后对需要处理的噪声图像进行滤波.实验表明,提出的方法可以很好地滤除图像中的脉冲噪声,自适应性强.  相似文献   

6.
自适应滤波器设计是典型的多参数组合优化问题,利用一种改进的粒子群优化算法(MPSO)来优化设计自适应LMS滤波器.将滤波器设计问题转化为滤波器参数优化的问题,利用改进的粒子群算法MPSO搜索整个参数空间,从而获得全局优化的系数.设计的滤波器应用于系统的跟踪响应中,并在基于可重构硬件的平台上实现自适应滤波器.从收敛和失调性能指标评价所设计的LMS滤波器,实验结果表明设计的LMS滤波器具有较好的性能,证明了这种方法的有效性和优越性.  相似文献   

7.
粒子群优化算法是根据鸟群觅食过程中的迁徙和群集模型而提出的用于解决优化问题的一类新兴的随机优化算法.介绍了PSO算法的基本原理和一些改进措施及PSO算法的应用,并对其将来的发展进行了展望.  相似文献   

8.
为解决粒子滤波算法中存在的粒子退化和样本枯竭问题,提出一种新的粒子滤波算法.利用粒子群优化思想促使采样粒子向高似然区域移动,减缓粒子权值的退化;再通过人工免疫算法中的变异操作扩大算法寻找最优值的范围并增加粒子的多样性,避免算法陷入局部最优,增强算法的全局搜索能力,进而缓解样本枯竭.实验表明,该算法比标准粒子滤波的状态估计精度提高近40倍,比扩展卡尔曼粒子滤波提高近28倍,比无迹卡尔曼粒子滤波提高近6倍,滤波效率为37.523%,是标准粒子滤波的37倍,该算法具有更好的实时性和更高的状态估计精度,能有效缓解粒子的退化和样本的枯竭.  相似文献   

9.
为克服粒子群优化算法容易陷入局部最优的缺点,根据混沌运动的随机性、遍历性特点,提出一种基于混沌思想的粒子群优化算法(CPSO)、该算法利用种群适应度方差进行早熟收敛判断,实现对进化过程的监视,当发现种群陷入局部最优时,对种群进行混沌初始化,帮助种群摆脱局部最优点.对4种典型测试函数的仿真结果表明,改进算法明显减少了种群陷入局部最优的可能性.其全局寻优能力明显强于标准粒子群优化算法.  相似文献   

10.
粒子群优化算法的研究与展望   总被引:4,自引:0,他引:4  
粒子群优化算法是一种基于群智能的随机优化算法,具有简单易实现、设置参数少、全局优化能力强等优点.着重对粒子群优化算法中的基本算法、改进算法、应用领域和研究热点等方面做了较为详细的论述.  相似文献   

11.
在能源互联网发展的背景下,针对电网需求侧响应的策略及用户节约用电成本的要求,设计智能家居管理系统(smart home management system, SHMS)的基本结构,构建智能家居管理系统负荷优化模型,并采用引入衰减因子的自适应粒子群算法对模型进行求解,可得到满足用户要求的家庭负荷运行方案。仿真算例采用了实际的分时电价、室外温度、负荷参数等信息,与优化前相比,用户负荷曲线得到改善,用电成本及用电量明显下降,验证了算法的有效性。  相似文献   

12.
种群分类粒子群改进算法研究   总被引:3,自引:1,他引:3  
针对粒子群算法在陷入局部最优时难于跳出的缺陷,提出一种改进的粒子群算法.该算法首先利用粒子适应值的统计规律对粒子进行分类,对属于不同类别的粒子采用不同的进化模型,对于利用完全模型进化的粒子,采用动态调整学习因子的方法,从而大大提高了算法的优化效率和优化精度.通过反复实验分析,得出学习因子随着进化推进的最优变化规律,并给出了学习因子的最佳函数表达式.仿真结果表明,利用改进的PSO算法优化4种具有代表性的基准函数,无论是在优化精度方面还是在优化效率方面,均较以往提出的PSO算法在性能上有本质的提高.  相似文献   

13.
标准粒子群算法主要用于优化连续性,而对粒子群算法求解非线性整数规划,算法的粒子位置必须解决取整问题。基此,文章提出一种粒子位置最终取整的方法,以改进粒子群算法解决整数规划的具体过程。基准函数的仿真结果表明,改进后的取整方法的搜索成功率优于直接取整和随机取整,综合搜索效率更佳。  相似文献   

14.
基于改进粒子群算法的组合测试数据生成   总被引:1,自引:0,他引:1  
针对传统粒子群优化算法生成测试数据容易产生早熟收敛而陷入局部最优的问题,提出一种基于改进粒子群算法的组合测试数据生成算法。该算法在粒子群算法的基础上引入一种惯性权重自适应调整策略,根据粒子的适应度不同采用不同的惯性权重,从而有效的平衡算法的全局和局部搜索能力,增加种群的多样性并提高算法的搜索效率。仿真实验表明该算法与传统粒子群算法相比,所需迭代次数减少,生成组合测试数据速度快。  相似文献   

15.
为了提高粒子滤波的性能,使用集合卡尔曼滤波对建议分布进行改进,同时提出了用于视频跟踪的自适应融合模型.使用集合卡尔曼滤波结合当前的观测信息构造建议分布,结合当前观测信息对每一个粒子进行集合分析,得到新的建议分布,依据新的建议分布对粒子进行采样,同时在跟踪过程中将颜色特征模型和形状特征模型进行融合,并进行自适应更新.实验结果证明:相对于传统粒子滤波和扩展卡尔曼粒子滤波,使用新的建议分布可以更有效地降低均方根误差,同时自适应融合模型的稳定性要高于使用单一颜色模型.使用新的建议分布和融合模型,可以有效提高粒子滤波的准确性和稳定性.  相似文献   

16.
通过对粒子滤波算法中建议分布与重采样2种改进技术分析,提出了一种粒子滤波自适应优化算法.首先,基于退火参数自适应优化混合建议分布,以改进建议分布的采样范围.然后,在基于有效样本大小的自适应重采样技术之上,借助另一多样性测度即种群多样性因子来自适应调整重采样阈值,而且,样本变异操作在重采样之后被引入确保样本的多样性.同时,结合部分分层重采样算法研究并进行改进,改进的部分分层重采样算法具有原算法执行快时间短的优点,同时结合权重优化的思想改进重采样的样本权重计算.通过仿真实验,粒子滤波自适应优化算法的性能和有效性均得以验证.  相似文献   

17.
基于粒子群算法的配电网网架规划   总被引:8,自引:0,他引:8  
针对配电网网架规划问题,提出了一种改进的混合粒子群算法,引入与以往的进化粒子群混合算法不同的动态邻域间极值粒子的交叉操作,提高了算法的收敛速度;提出一种“尽量满足辐射状约束”的方法,有效地解决了离散变量的处理和辐射网判断之间的矛盾。算例计算表明,该算法收敛速度快,具有很好的全局搜索能力,是可行且有效的,对于推广PSO在电力系统中的应用具有积极的意义。  相似文献   

18.
在简单克里格插值的基础上,利用混合粒子群优化算法对变异函数的球型模型进行加权最小二乘拟合,提出了一种基于混合粒子群优化算法的改进Kriging插值法,实现了高精度的拟合,参数的全局寻优。基于黄土沟壑点云数据的实验结果表明,相较于普通克里格和遗传克里格插值法,改进算法插值精度有效提高了克里格插值精度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号