首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
The effects of a post-weld heat treatment on the fracture toughness and fatigue crack growth behaviour of electron beam welds of an α + β titanium alloy, Ti–6.5Al–1.9Zr–0.25Si have been studied. Welds in the stress-relieved condition exhibited poor fracture toughness due to poor energy absorbing capacity of the thin α and α' phases. Post-weld heat treatment which resulted in the decomposition of α' to α + β and the coarsening of intragranular and intergranular α resulted in improved toughness. This improvement in the toughness is related to improved ductility leading to crack blunting, crack path deviation at the thick intragranular and intergranular α phase. Fatigue crack growth resistance of welds was superior to the base metal in the α + β heat-treated condition. The superior crack growth resistance of the welds is due to the acicular α microstructure which results in a tortuous crack path and possible crack closure arising from crack path tortuosity.  相似文献   

2.
The aim of present investigation is to study the effect of an electron beam surface treatment on 2205 duplex stainless steel joints produced by the same electron beam process. Heat treatment of the joints is necessary, to re-establish the ferrite/austenite balance, which is extremely disturbed during the electron beam welding process. For assessing the effectiveness of the electron beam surface treatment, similar weld joints were subjected to conventional furnace heat treatment at 1050 °C, and used as reference. Metallographic techniques and mechanical testing were used to assess the microstructure and corresponding mechanical properties of the as-welded and heat treated specimens. The metallographic results showed that an austenite/ferrite ratio approaching the one produced by a typical furnace post-weld heat treatment can also be achieved by heating locally the weld surface with an electron beam. At the same time the tensile properties show considerable improvement, approaching those obtained by means of a conventional furnace heat treatment, whereas the impact strength is also improved compared to the as welded specimen, but remains clearly lower than the one of the furnace heat treated weld.  相似文献   

3.
Abstract— The purpose of this study is to investigate the effect of electron beam welding parameters on fatigue crack growth rate in AISI 4130 steel. The welding method was carried out by using nonoscillation and oscillation electron beam patterns. In nonoscillation welding, the welding speed, was varied; in oscillation welding just the oscillation pattern and the oscillation frequency were varied. After welding, X-ray inspection, metallography, fatigue crack growth tests and scanning electron microscopy were employed to characterize these specimens. From the results, the weld centerline solidification structure transforms from a longitudinal raft structure to an interlocked structure with increasing welding speed, and the fatigue crack growth rate increases slightly. The transverse oscillation pattern provides a lower fatigue crack growth rate than the longitudinal oscillation pattern. The higher oscillation frequency gives a lower fatigue crack growth resistence for the longitudinal oscillation pattern, but the opposite is the case for the transverse oscillation pattern.  相似文献   

4.
Fatigue crack growth behaviours in different welding zones of laser beam welded specimens were investigated using central crack tension specimens for 6156 aluminium alloy under constant amplitude loading at nominal applied stress ratio R = 0.5, 0.06, ?1. The experimental results showed that base metal (BM) exhibited superior fatigue crack resistance compared to weld metal (WM) and heat‐affected zone (HAZ). Crack growth resistance of WM was the lowest. The exponent m values for BM and HAZ at different stress ratios are close and around 2.6, while m for WM at different stress ratio is around 4.7. The discrepancy between crack growth rates for WM and BM is more evident with increasing stress ratio, while it is a little change for HAZ and BM. Change of the microstructure in WM deteriorates the resistance of fatigue crack growth compared to BM. It was mainly due to grain boundary liquation and dissolving of second‐phase particles in the weld region. It was also found that the variety of fatigue crack resistance for different welding zones is in conformity with the change of hardness. BM with the highest hardness exhibited the maximum resistance for fatigue crack, and WM with the lowest hardness exhibited the minimum fatigue crack resistance.  相似文献   

5.
Abstract

The fatigue crack growth resistance of α–β titanium alloys can be altered by microstructural modification. During welding, the fusion zone microstructure depends on cooling rate. In the present work, the alloy Ti-6Al-4V was welded over a range of heat inputs, using electron beam and gas tungsten arc welding. The weld microstructure varied from predominantly martensitic under rapid cooling conditions to a mixture of martensite and diffusional products on slower cooling. Post-weld heat treatment resulted in a basketweave α–β aggregate that coarsened with temperature and time. In all welded and heat treated conditions, the fusion zone exhibited a fatigue crack growth resistance superior to that of the base material, which was in part attributed to the lamellar microstructure of the fusion zone. Welding residual stresses also played a beneficial role in the as welded condition. Post-weld heat treatment eliminated the advantage resulting from the welding stresses but not that as a result of microstructure.  相似文献   

6.
本文研究了3Cr2W8V 钢的热疲劳特性。试验结果表明,热疲劳裂纹优先萌生于热应力最大和弱化最严重的局部地区。在一定尺寸范围内,裂纹的亚稳扩展速率近似是常数。裂纹扩展方式除条带模型外,还有不连续突进。长期冷热循环引起钢软化,软化机理是累积回火,热应力对循环软化有加速作用。热疲劳抗力随热处理温度改变呈非单调变化,分别有一个最佳淬火温度和最佳回火温度。随着循环上限温度的升高,热疲劳抗力显著下降,最佳回火温度向高温方向移动,最佳淬火温度基本不变。热疲劳抗力主要取决于材料的高温屈服强度,在强度、塑性及循环热稳定性取得适当配合时最大。  相似文献   

7.
The electron beam local post-weld heat treatment (EBLPWHT) is a rather new method that provides the advantages of high precision, flexibility and efficiency, energy saving and higher productivity. This paper studies the effect of two post-weld heat treatment processes on the microstructure, mechanical properties and fracture toughness of an electron beam welded joints in 30CrMnSiNi2A steel. EBLPWHT, in a vacuum chamber, immediately after welding and a traditional furnace whole post-weld heat treatment (FWPWHT) were compared. The experimental results show that, after EBLPWHT treatment, the main microstructure of weld was changed from coarse acicular martensite into lath rnartensite, HAZ was changed from lath martensite, bainite into lower bainite, and base metal was changed from ferrite and pearlite into upper bainite and residual austenite. The microstructures of different zones of joints in FWPWHT condition were tempered sorbite. The properties of welded joints can be improved by the EBLPWHT in some extent, and especially largely for the fracture toughness of welded joints. However the value of fracture toughness of base metal is comparatively low, so appropriate heat treatment parameters should be explored in the future.  相似文献   

8.
Fatigue crack propagation from surface flaws in butt-welded Type 316 joints has been studied at 550°C. The effect of position of the flaw, mean stress and post-weld heat treatment have been included together with an assessment of the validity of using small compact tension specimens to predict rates of growth in large joints.

It is implied that the residual stress arising from welding is not necessarily additive to the applied stress during fatigue crack propagation in austentic weldment. However, appropriate care should be exercised over simulating the degree of constraint existing in a given situation.  相似文献   


9.
Two post-weld heat treatment cycles of one-step normalizing and two-step quenching and tempering have been performed by Gleeble, a thermo-mechanical simulator, to improve the toughness of fine-grained electric resistance welded pipe welds. Comparison was made to API X65 grade steel, which is widely used for pipeline parts. Microstructural evolution was investigated by optical microscopy and transmission electron microscopy. Vickers hardness and Charpy V-notch impact toughness tests were used to evaluate the mechanical properties. While the mechanical properties of one-step normalizing heat treatment satisfied the API specification, the two-step quenching and tempering heat treatments were conditional upon tempering temperature for X65 grade and fine-grained steels. As a result, a one-step normalizing heat treatment was more effective for both steel pipes.  相似文献   

10.
The present investigation is aimed to evaluate fatigue crack growth parameters of gas tungsten arc, electron beam and laser beam welded Ti–6Al–4V titanium alloy for assessing the remaining service lives of existing structure by fracture mechanics approach. Center cracked tensile specimens were tested using a 100 kN servo hydraulic controlled fatigue testing machine under constant amplitude uniaxial tensile load. Crack growth curves were plotted and crack growth parameters (exponent and intercept) were evaluated. Fatigue crack growth behavior of welds was correlated with mechanical properties and microstructural characteristics of welds. Of the three joints, the joint fabricated by laser beam welding exhibited higher fatigue crack growth resistance due to the presence of fine lamellar microstructure in the weld metal.  相似文献   

11.
In this study, four post-weld heat treatment (PWHT) schedules were selected to enhance the mechanical properties of electron beam welded 300M ultrahigh strength steel joints. The microstructure, mechanical properties and fractography of specimens under the four post-weld heat treatment (PWHT) conditions were investigated and also compared with the base metal (BM) specimens treated by conventional quenching and tempering (QT). Results of macro and microstructures indicate that all of the four PWHT procedures did not eliminate the coarse columnar dendritic grains in weld metal (WM). Whereas, the morphology of the weld centerline and the boundaries of the columnar dendritic grains in WM of weld joint specimens subjected to the PWHT procedure of normalizing at 970 °C for 1 h followed by conventional quenching and tempering (W-N2QT) are indistinct. The width of martensite lath in WM of W-N2QT is narrower than that of specimens subjected to other PWHT procedures. Experimental results indicate that the ductility and toughness of conventional quenched and tempered joints are very low compared with the BM specimens treated by conventional QT. However, the strength and impact toughness of the W-N2QT specimens are superior to those of the BM specimen treated by conventional QT, and the ductility is only slightly inferior to that of the latter.  相似文献   

12.
An experimental methodology is described whereby interactions between cracks and microstructural barriers, and the consequent non-uniform propagation rates are observed without the assistance of any microscopy technique. This experimental procedure consists in increasing the grain size of Al1050 and Al1100 aluminum alloys specimens until the centimeter scale by applying a series of mechanical and heat treatments. By properly adjusting the strains, temperatures and furnace times of both stages a very precise control of the microstructural size is achieved. Once the thermomechanical treatment is completed and the sought microstructural size is obtained, a small circular notch is machined on each specimen in order to initiate the cracks at the desired location, and the samples are subjected to mode I fatigue loading. The fluctuating crack growth rate, the twist and tilt angles of the crack-plane at grain boundaries and crack arrest and branching can be easily observed with the naked eye. Production of secondary crack branches caused by roughness induced closure has also been observed. Tests were performed varying grain size and notch diameter and it was observed that the distance between successive minima in crack growth rate correlates well with the grain size of the specimens. .  相似文献   

13.
This paper presents the results of an experimental study of resistance-curve behavior and fatigue crack growth in cementitious matrices reinforced with eco-friendly natural fibers obtained from agricultural by-products. The composites include: blast furnace slag cement reinforced with pulped fibers of sisal, banana and bleached eucalyptus pulp, and ordinary Portland cement composites reinforced with bleached eucalyptus pulp. Fracture resistance (R-curve) and fatigue crack growth behavior were studied using single-edge notched bend specimens. The observed stable crack growth behavior was then related to crack/microstructure interactions that were elucidated via scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). Fracture mechanics models were used to quantify the observed crack-tip shielding due to crack-bridging. The implications of the results are also discussed for the design of natural fiber-reinforced composite materials for affordable housing.  相似文献   

14.
Interfacial fatigue crack growth behavior in GF/epoxy model composites was investigated using bifiber shear (BFS) specimens in a scanning electron microscope. The specimen is composed of two E-glass filaments with diameters of 23 and 40 μm, and bisphenol A type epoxy is impregnated between the filaments. The crack growth behavior under different stress ratios was investigated to clarify the fatigue crack growth mechanism. The change in the crack growth rate, da/dN, was not monotonic with crack length, suggesting a variation in the resistance to fatigue crack growth along a single filament. The resistance to fatigue crack growth of the interface is much smaller than that of composite laminates. The fatigue crack growth mechanism of the glass fiber/epoxy interface under different stress ratios is controlled by the maximum energy release rate, Gmax, which is completely different from that of composite laminates.  相似文献   

15.
A quenched and tempered marine steel has been cooled at different rates after tempering and low frequency fatigue crack growth rates in air and seawater compared. Water quenching was shown to result in significantly lower fatigue crack growth rates compared to furnace cooling. The likely causes and the implications of the results are discussed.  相似文献   

16.
This paper studies the effect of laser beam radiation on the fatigue crack growth threshold and the crack growth rate in 25CrMnSi steel plate. A comparison of radiated and unradiated specimens permits the derivation of an equation for the fatigue crack growth rate. The results show that radiation can enhance the fatigue threshold and retard crack growth rate.  相似文献   

17.
The effects of various surface treatment techniques on the fatigue crack growth performance of friction stir welded 2195 aluminum alloy were investigated. The objective was to reduce fatigue crack growth rates and enhance the fatigue life of welded joints. The crack growth rates were assessed and characterized for different peening conditions at a stress ratio (R) of 0.1, and 0.7. The surface and through-thickness residual stress distribution were also investigated and presented for the various regions in the weld. Tensile residual stresses introduced during the welding process were found to become significantly compressive, particularly after laser peening. The effect of the compressive stresses was deemed responsible for increasing the resistance to fatigue crack growth of the welds. The results indicate a significant reduction in fatigue crack growth rates using laser peening compared to shot peening and native welded specimens. This reduced fatigue crack growth rate was comparable to the base unwelded material.  相似文献   

18.
研究了四组不同工艺热处理的8Cr4Mo4V钢试样的疲劳裂纹扩展速率及其疲劳断口。结果表明:淬回火8Cr4Mo4V钢的室温疲劳裂纹扩展速率在裂纹稳定扩展阶段符合Paris公式,其大小与热处理工艺有关,主要取决于马氏体中的固溶碳含量,马氏体中的固溶碳含量越高,疲劳裂纹扩展速率也越大,而与该钢是否经过冷处理没有明显关系;淬回火8Cr4Mo4V钢疲劳断口的微观形貌以准解理为主,马氏体(211)晶面的X射线衍射峰半高宽越小,疲劳裂纹扩展速率也越小,疲劳断口上的拉伸残余应力则越大。  相似文献   

19.
This work presents experimental results on effects of severe plastic deformation (SPD) and subsequent natural ageing on tensile mechanical properties and fatigue crack growth resistance of fine‐grained 7075 Al alloy. The alloy was subjected to equal channel angular pressing (ECAP) after solution treatment. Fatigue crack propagation tests were conducted in room condition, at load ratio R = 0.1 and different load ranges on small disk shaped compact tension specimens. Fatigue fracture surface is also investigated using scanning electron microscopy observations and showed more ductile fatigue crack growth in the unECAPed specimen. Despite the increased tensile strength after ECAP, the ductility that controls low‐cycle fatigue behaviour has decreased. It is found that ECAP has resulted in a remarkable change in Paris regime parameters and a significant increase in fatigue crack growth rate. The decrease in fatigue crack growth resistance and ΔKc after ECAP can be attributed to the decrease in alloy's ductility.  相似文献   

20.
The effects of test environment humidity and temperature on the fatigue threshold and crack growth behavior of P2-etched and commercial coil-coated (CC) aluminum adhesive joints were studied under mixed-mode loading using aluminum asymmetric double cantilever beam (ADCB) specimens. Under dry conditions, increasing the temperature to 80 °C had an insignificant effect on the fatigue threshold, but caused an increase in the crack growth rates. At 40 °C, the fatigue behavior was insensitive to moisture at higher crack growth rates, but became sensitive to moisture level in the test environment as crack growth rates slowed to the threshold. The effect of moisture and temperature were explained by the observed changes in the crack path, which in general moved progressively closer to the more highly-strained adherend as the applied strain energy release rate, and consequently the crack growth rate, decreased. Furthermore, the residual adhesive thickness on the more highly-strained adherend, tr, increased with increasing temperature, and the crack path shifted to the hydrated aluminum oxide interface when the test environment was saturated with moisture. The degrading effect of a hot-wet environment was similar for both P2-etch and CC pretreatments. At higher crack growth rates, the joint fatigue performance was degraded solely due to the effect of the increased temperature, whereas at low crack growth rates, the fatigue performance was degraded predominantly because of elevated moisture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号