首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
何温  王丛  田震  王鑫  高达  杨海燕  柏伟 《红外》2021,42(12):6-14
对影响Hg1-xCdxTe红外探测器性能的不同调控技术——包括材料调控(组分及温度、掺杂浓度、压强及应力等对材料性能的调控)、器件结构调控(n-on-p、p-on-n、p-i-n、n-B-n等器件结构的调控)和工艺调控(各种工艺调控对材料制备和器件制备等的影响)等——进行了简单介绍,以合理调控器件性能、有效降低器件暗电流、提高器件工作温度等,从而促进Hg1-xCdxTe红外探测器在降低成本、减小功耗、提高可靠性等方面的发展。  相似文献   

2.
Hg1-xMnxTe semiconducting semimagnetic alloy has been examined in the context of its possible applications in infrared detectors. For analysis of detector properties the intrinsic carrier concentration has been calculated as a function of temperature and crystal composition. The starting material was In-doped Hg1-xMnxTe grown by the modified Bridgman method. The as-grown crystals with manganese content of 12-19% were p-type with carrier concentration and mobility of 100 cm2/ Vs at 77 K. An-type layer was formed on the surface by the annealing process in saturated Hg-vapour at 270-320° for 2 hrs. Capacitance-voltage curves have C-3 dependence on applied voltage indicating that the junction is linearly graded. From standard electrical measurements and spectral characteristics the main detector parameters were determined and compared to those of Hg1-xCdxTe devices. The influence of material properties on detector parameters was analyzed. In order to estimate the carrier transport mechanisms, differential resistivities and current-voltage curves were measured over a wide range of temperaturesi.e. 25 to 300 K. From the temperature dependence of the R0A product, it was established that at high temperatures (150-300 K) the carrier transport is dominated by a recombination-generation mechanism. In low temperature region the excess current at forward bias is probably attributed to carrier tunneling via energy states distributed randomly within the forbidden gap. At reverse bias the leakage surface or volume currents dominate in the carrier transport.  相似文献   

3.
It has been found that single crystals of Hg1-xCdxTe with volumes of about 3 cm3 can be obtained using a new method for crystal growth. Experimental details of the new technique as applied to Hg1-xCdxTe are discussed. Single crystal growth mechanisms are proposed which involve crystallization from a two-phase mixture followed by recrystallization of the solid. Evidence for the unusually high quality material is obtained from electron-beam microprobe analyses, electrical properties, and magneto-optical spectra. This work was sponsored by the Department of the Air Force.  相似文献   

4.
The dynamic mass-loss technique has been employed to measure Hg partial pressures over Te-saturated Hg1-xCdxTe solid solutions with x = 0.40, 0.54, and 0.70 in the 10-1 to 10-4 atm range. The relative chemical potentials of HgTe in Hg1-xCdxTe solid solutions have been calculated using the measured Hg partial pressures at temperatures below 413°C, and fitted into an analytical expression. A Gibbs-Duhem integration yielded the relative chemical potentials of CdTe. By combining the relative chemical potentials of the binary components HgTe and CdTe, an expression for the Gibbs free energy of mixing was derived. The binodal (miscibility gap) and spinodal curves of the Hg1-xCdxTe solid solutions have been established with the critical temperature and composition of 221°C and Hg0.40Cd0.60Te.  相似文献   

5.
Homogeneous, nearly perfect single crystals of Hg1-xCdxTe are extremely difficult to prepare due primarily to the high vapor pressure of mercury. However, epitaxially grown Hg1-xCdxTe layers have a high potential for yielding material of a substantially higher quality. Using a new, open-tube, horizontal slider-type liquid phase epitaxial (LPE) growth technique, in which mercury pressure controlled growth solutions are used, a high degree of growth solution compositional control has been demonstrated. LPE layers of Hg1-xCdxTe have been grown on CdTe substrates and their high quality has been confirmed by optical, transport and electron microprobe measurements. Layer thicknesses are uniform and have been varied from 5 to 40 μ by changing the degree of supercooling or the growth time. An electron carrier concentration as low as 8.6 × 1015/cm3 and electron Hall mobilities up to 2.8 × 105 cm2/V-sec at 77K have been measured on in situ annealed samples. This work was sponsored by the Department of the Air Force and the U.S. Army Research Office.  相似文献   

6.
The growth of epitaxial layers of mercury-cadmium-telluride (Hg1-xCdxTe) with relatively low x (0.2-0.3) from Te-rich solutions in an open tube sliding system is studied. The development of a semiclosed slider system with unique features permits the growth of low x material at atmospheric pressure. The quality of the films is improved by the use of Cd1-yZyTe and Hg1-xCdxTe substrates instead of CdTe. The substrate effects and the growth procedure are discussed and a solidus line at a relatively low temperature is reported. The asgrown epitaxial layers are p-type with hole concentration of the order of 1·1017 cm−3, hole mobility of about 300 cm2·V−1 sec−1 and excess minority carrier life-time of 3 nsec, at 77 K.  相似文献   

7.
8.
Using the molecular beam epitaxial (MBE) technique, CdTe and Hg1-xCdxTe have been grown on Cr-doped GaAs (100) sub-strates. A single effusion cell charged with polycrystal-line CdTe is used for the growth of CdTe films. The CdTe films grown at 200 °C with a growth rate of ~ 2 μm/hr show both streaked and “Kikuchi” patterns, indicating single crystalline CdTe films are smoothly grown on the GaAs sub-strates. A sharp emission peak is observed at near band-edge (7865 Å, 1.577 eV) in the photoluminescence spectrum at 77 K. For the growth of Hg1-xCdxTe films, separate sources of HgTe, Cd and Te are used. Hg0.6Cd0.4Te films are grown at 50 °C with a growth rate of 1.7 μm/hr. The surfaces are mirror-smooth and the interfaces between the films and the substrates are very flat and smooth. As-grown Hg0.6Cd0.4Te films are p-type and converted into n-type by annealing in Hg pressure. Carrier concentration and Hall mobility of an annealed Hg0.6Cd0.4Te film are 1 × 1017 cm?3 and 1000 cm2/V-sec at 77 K, respectively.  相似文献   

9.
The composition of photochemically grown native oxides on Hg1-xCdxTe (x = 0.3) has been analyzed and depth profiled using x-ray photoelectron spectroscopy and Rutherford backscattering spectroscopy. The oxide films were grown in either N2O or O2 ambients, and differences in the oxidation process were examined by varying the time and temperature of oxide growth. Under all growth conditions, oxides grown in an O2 ambient exhibited a higher Hg concentration in the bulk oxide region when compared to N2O grown oxides. The Hg/Te ratio of all the oxides was found to be less than the starting Hg1-xCdxTe substrates and, in some cases, this may be leading to an accumulation of Hg in the oxide/Hg1-xCdxTe interface region. For growths at higher temperatures (∼75°C), the excess Hg was seen to move from the oxide/Hg1-xCdxTe interface region to the oxide surface. In O2 ambients, the Hg accumulated at the surface of the oxide whereas for growths in N2O, it was lost to the ambient. Previous results on photochemical oxidation of Hg1-xCdxTe show an inverse relationship between oxide growth rate and temperature. Evidence obtained in this study from oxide compositions, depth profiles and annealing at higher temperatures, suggest that this relationship between oxide growth rate and temperature is primarily due to temperature induced differences in the oxidizing ambient, and not the result of a change in the film growth mechanism due to changing diffusion characteristics with temperature.  相似文献   

10.
The full set of Lorentzian oscillator parameters describing the two-mode phonon behavior in Hg1-x-jCdxTe is reported. A new analysis of reflectivity spectra combined with existing results gives the most accurate available values for the CdTe-like and HgTe-like transverse optical frequency, strength and (for the first time) damping constant vs CdTe fractionx at room, liquid nitrogen and liquid helium temperatures. Polynomial fits vsx for each parameter are provided for use in characterizing Hg1-xCdxTe and the HgTe-CdTe superlattice.  相似文献   

11.
We present a study of the electro-optical properties ofHg 1- xCdxTe epitaxial layers and Hg1-x CdxTe/CdTe (0.28 < x < 0.30) superlattice structures by x-ray diffraction, lateral transport and photo- and magneto-luminescence measurements. Systematic studies of the excitation intensity and magnetic field dependence of the photoluminescence revealed direct evidence of an excitonic contribution to the observed luminescence in Hg1- xCdxTe epitaxial layers. Similar investigations of the superlattice structures indicated that excitonic corrections were required to adequately fit the luminescence data. Optical gains of 80 cm−1 were obtained for an excitation intensity of 100 kW/cm2 indicating suitable electro-optical properties for making efficient mid-infrared laser diodes.  相似文献   

12.
There is a well-known direct negative correlation between dislocation density and optoelectronic device performance. Reduction in detector noise associated with dislocations is an important target for improvement of mercury cadmium telluride (Hg1?x Cd x Te)-based material in order to broaden its use in the very long-wavelength infrared (VLWIR) regime. The lattice mismatch and differences in physical properties between substrates and the epitaxial Hg1?x Cd x Te layers cause an increased threading dislocation density. As demonstrated in this work, the presence of arsenic impurities via p-type doping in molecular beam epitaxy (MBE)-grown epitaxial crystal structure increases the etch pit density (EPD) of Hg1?x Cd x Te grown on Si substrates but not on CdZnTe substrates. This EPD increase is not observed in indium n-type-doped Hg1?x Cd x Te grown on either Si or CdZnTe substrates. This trend is also seen in layers with different cadmium compositions. All of the EPD variations of the structures studied here are shown to be independent of the MBE machine used to grow the structure. The fundamentals of this higher EPD are not yet completely understood.  相似文献   

13.
This paper reviews the history and technology of a bulk Hg1?x Cd x Te crystal growth process that was developed in the early 1980s at Honeywell Electro-Optics Division (presently BAE Systems, Electronic Solutions). The crystal growth process name, DME, was an acronym for the department name: Detector Materials Engineering. This was an accelerated crucible rotation technique (ACRT) vertical traveling heater method growth process. Crystal growth occurred in the pseudobinary Hg1?x Cd x Te system. ACRT mixing allowed the lower-density, higher-x-value Hg1?x Cd x Te growth nutrient in the upper region of the ampoule to replenish the depleted melt and allowed the growth of constant-x-value, higher-density Hg1?x Cd x Te. The material grown by this research and production growth process yielded single crystals that had improved purity, compositional uniformity, precipitate density, and reproducibility in comparison with solid-state recrystallization and other bulk Hg1?x Cd x Te growth techniques. Radial and longitudinal nonuniformities in x-value for Hg1?x Cd x Te were reduced to <0.0008/cm. The net electrically active background impurities did not exceed 1 × 1014 cm?3. Electron mobilities in excess of 1.5 × 106 cm2/V-s were observed at 77 K. Structural defects of less than 104 cm?2 were measured. Te precipitates were not observed. As a result of these material improvements, long-wavelength infrared (LWIR) photoconductive devices fabricated from DME material had highly desired performance characteristics.  相似文献   

14.
High sensitive IR detectors were developed by using noncompensated CdxHg1-xTe (x=0.25÷0.3) with the field-effect electrode from InxO3, which were received by magnetron spattering onto the anodized surface of the single crystal. Photoelectric properties (spectral distribution of the photoconductivity, time-response, the uniformity of the spatial distribution of sensitivity) were investigated under different potential applied to the field-effect electrode. For high sensitive material the detectivity D* = 8·1011 cm Hz1/2 W-1was obtained at the wavelength of 5 μm in the aperture angle of 30°. It was shown that the semitransparent field-effect electrode made from In2O3 allows to rule the output parameters of the detector in a wide range.  相似文献   

15.
HgCdTe remains the material of choice for high-performance infrared (IR) detectors due to its tunable direct bandgap energy corresponding to the IR spectral region, and the advancement of HgCdTe materials growth and processing technologies. Accurate knowledge of the HgCdTe optical absorption coefficient is important for IR detector design, layer screening, and device analysis. The spectral response for IR detectors is dependent on optical absorption above the bandgap energy, where much of the study of absorption coefficient in HgCdTe has focused on the bandtail region. In this work, the optical absorption coefficient was studied by theoretical bandstructure calculations and experimental measurements on HgCdTe layers using techniques of IR spectroscopic ellipsometry and IR transmission. The theoretical and experimental results suggest that the absorption coefficient between 600 cm−1 and 5,000 cm−1 is related to energy relative to bandgap with a fractional exponent between 0.6 and 1, rather than the previously used expressions relating to a parabolic or hyperbolic bandstructure. The fitting parameters for Hg1-xCdxTe with x=0.22–0.60 are presented to develop a model for the optical absorption coefficient spectra. The calculated detector spectral response using the new and previously reported absorption coefficient models suggests that next generation IR detectors employing multilayer structures with graded compositional profiles will likely benefit from this new model.  相似文献   

16.
The doping properties of selected impurities in Hg1-x Cdx Te have been determined. Primary emphasis is on elements from Groups IB and IIIA, expected to substitute on the metal sublattice, and on elements from Groups VA and VIIA, expected to substitute on the Te sublattice. In addition, the behavior of some elements from Group IV as well as behavior of Li has been determined. Impurities were introduced into Hg1-x Cdx Te either by diffusion or during crystal growth. Cu, Ag and Li are fast diffusing acceptors, Ga is a fast diffusing donor, Al and Si are donors which require high diffusion temperature to effect diffusion, P and As are slowly diffusing acceptors and Br is a slowly diffusing donor. Sn appears to be inactive. In general, impurities substituted on the metal sublattice are rapid diffusers while those substituted on Te sites are slow diffueers. Supported in part by the Air Force Materials Laboratory, WPAFB, Ohio.  相似文献   

17.
Mercury radiotracer diffusion results are presented, in the range 254 to 452°C, for bulk and epitaxial CdxHg1–xTe, and we believe this to be the first report for metalorganic vapor phase epitaxy (MOVPE) grown CdxHg1–xTe. For all growth types studied, with compositions of xCd=0.2±0.04, the variation of the lattice diffusion coefficient, DHg, with temperature, under saturated mercury partial pressure, obeyed the equation: DHg=3×10−3 exp(−1.2 eV/kT) cm2 s−1. It was found to have a strong composition dependence but was insensitive to changes of substrate material or crystal orientation. Autoradiography was used to show that mercury also exploited defect structure to diffuse rapidly from the surface. Dislocation diffusion analysis is used to model defect tails in MOVPE CdxHg1–xTe profiles.  相似文献   

18.
The growth history of Hg1−xCdxTe films deposited on (100) CdTe substrates by chemical vapor transport (CVT) has been studied, for the first time, by using a transient growth technique. The observed morphological evolution of Hg1−xCdxTe films deposited at 545°C shows a transition behavior from three-dimensional (3D) islands to two-dimensional (2D) layer growth. The experimental results indicate that the so-called critical time needed for the above morphological transition is about lh under present experimental conditions. Based on the chemical bonding properties of Hg1−xCdxTe, and on the behavior of the morphological transition, the Stranski-Krastanov growth mode is suggested for the epitaxial growth system. The time dependence of the growth thickness, of the growth rate (R100) along the [100] direction, and of the surface composition all reveal a transient behavior. These are related to the nature of the Hg1-xCdxTe/ (100)CdTe heterojunction and to the surface reactions. Comparison of the growth rates and of the total mass deposited as a function of time shows the relationship between epitaxial growth and mass flux of the Hg1−xCdxTe-HgI2 chemical vapor transport system.  相似文献   

19.
A study on preparation of Cd0.96Zn0.04Te(211)B substrates for growth of Hg1−xCdxTe epitaxial layers by molecular beam epitaxy (MBE) was investigated. The objective was to investigate the impact of starting substrate surface quality on surface defects such as voids and hillocks commonly observed on MBE Hg1−xCdxTe layers. The results of this study indicate that, when the Cd0.96Zn0.04Te(211)B substrates are properly prepared, surface defects on the resulting MBE Hg1−xCdxTe films are reduced to minimum (size, ∼0.1 m and density ∼500/cm2) so that these MBE Hg1−xCdx Te films have surface quality as good as that of liquid phase epitaxial (LPE) Hg1−xCdxTe films currently in production in this laboratory.  相似文献   

20.
介绍了叠层双色红外焦平面的发展背景和适用的材料体系,及其在国际上的发展现状,重点论述了叠层双色探测器结构类型及其探测特点,最后介绍了国内碲镉汞叠层双色焦平面的研究进展。报道了基于n+-p-P-P-N多层异质结Hg1-xCdxTe材料的叠层中波/短波(256×1)×2红外双色焦平面器件研制及性能。在77 K液氮温度下,红外焦平面探测器的两个波段的截止波长λc分别为2.8 μm和3.9 μm,中波/短波焦平面的平均单色探测率D*λp分别为1.8×1011 cmHz1/2/W和9.6×1010 cmHz1/2/W。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号