首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
《Fire Safety Journal》1997,29(1):1-25
This paper presents a comparison of the results from a computational fluid dynamics (CFD) model and a two-zone model against a comprehensive set of data obtained from one flashover fire experiment. The experimental results were obtained from a full-scale prototype apartment building under flashover conditions. Three polyurethane mattresses were used as fuel. The CFAST two-zone model (version 2.0) was also used to predict results for this flashover fire test. The mass release rate, gas temperature, radiation heat flux and gas compositions (O2, CO2 and CO) were measured. A CFD program, CESARE-CFD Fire Model, has been developed and was used also to predict results for polyurethane-slab fire. A simple flame spread model was incorporated into the CFD program to predict the mass release rate and heat release rate during the fire instead of providing it as an input as is required for most zone and CFD models. It was found that the CFD model provided reasonable predictions of the magnitude and the trends for the temperatures in the burn room and the species concentrations, but over-predicted the temperatures in the adjacent enclosures. From a life safety perspective, the CFD model conservatively predicted the concentrations of CO and CO2. The predicted temperatures from the CFAST fire model agreed well with the experimental results in most areas. However, the CFAST model under predicted the temperature in the lower layer of the room of fire origin and the concentration of CO in most areas.  相似文献   

2.
3.
《Fire Safety Journal》1996,26(3):191-219
Realistic fire environments in a prototype multi-room apartment in a multi-storey building are studied. The fires are designed as non-flashover and flashover types, using standard polyurethane mattresses as fuel. A comprehensive set of experimental data is presented. The measured results include flame spread velocity, mass release rate, gas temperature, radiation heat flux and gas analysis. A computational fluid dynamics (CFD) model, called a CESARE-CFD fire model, has been used to simulate these polyurethane slab fires. The CFD model is described by three-dimensional transport equations for mass, momentum and enthalpy. The turbulence flow was modelled using the k−ϵ model. A soot formation model and a flame spread model were incorporated into the CFD model. The flame spread velocity and the mass release rate of the polyurethane slab fires were predicted in this study. It was found that the CFD model provided reasonable predictions of the magnitude and trends for the experiments both in the non-flashover and flashover fire cases.  相似文献   

4.
为了解重庆段长江水作为热泵冷热源的概况,对重庆段长江水温的横断面变化和时间变化进行了实测分析,并对江水的水质和水位变化进行了分析,得到长江水温在整个横断面基本恒定,而江水的夏季月平均温度在22~25℃,冬季月平均温度在11~16℃,水温日变化幅度不超过0.5℃。是一种具有良好品质的稳定的冷热源。而长江水作为水源热泵的冷热源,主要解决的水质问题是泥沙和悬浮物,在三峡库区形成后水位变化可达到30 m,因此取水方式可考虑采用浮船取水方式。  相似文献   

5.
研究设有吹拔空间的高层建筑烟气流动及火灾蔓延特征,分析其对防火分区和安全疏散的影响。采用性能化消防设计的方法对某设有74.65 m、55.95 m双吹拔空间的一类高层建筑建立火灾发展模型、设计火灾场景、用CFD火灾模拟软件进行数值模拟。结果表明该建筑利用吹拔空间自然排烟时各火灾场景均能满足各层人员疏散的性能指标,在吹拔空间四周环廊上设置挡烟垂壁影响烟气的顺畅排出,缩短了危险来临时间,增大了火灾的危害性。提出吹拔空间式建筑宜利用烟囱效应优先采用自然排烟方式,烟气控制宜疏堵结合,以疏导为主的设计理念。  相似文献   

6.
In this study, the Fire Dynamics Simulator (FDS), a computational fluid dynamics (CFD) model developed by National Institute of Standards and Technology (NIST) is used to simulate fire tests conducted at the National Research Council of Canada (CNRC). These tests were conducted in an experimental 10-storey tower to generate realistic smoke movement data. A full size FDS model of the tower was developed to predict smoke movement from fires that originate on the second floor. Three propane fire tests were modelled, and predictions of O2, CO2 concentrations and temperature on each floor are compared with the experimental data. This paper provides details of the tests, and the numerical modelling, and discusses the comparisons between the model results and the experiments. The 10-storey experimental tower was designed to simulate the centre core of high-rise buildings. It includes a compartment and corridor on each floor, a stair shaft, elevator shaft and service shafts. Three propane fire tests were conducted in 2006 and 2007 to study smoke movement through the stair shaft to the upper floors of the building. The fire was set in the compartment of the 2nd floor. Thermocouples and gas analyzers were placed on each floor to measure temperature and O2, CO2 and CO concentrations. Comparisons in the fire compartment and floor of fire show that the FDS model gives a good prediction of temperature and O2 and CO2 concentrations. In the stair shaft and upper floors there are some small differences which are due to the effect of heat transfer to the stairs that was not considered in the model. Overall the study demonstrates that FDS is capable of modelling fire development and smoke movement in a high rise building for well ventilated fires.  相似文献   

7.
《Fire Safety Journal》2006,41(7):539-546
Many building codes stipulate the need for fire-rated doors to be closely fitted around their edges to impede the passage of smoke and flame. To ensure the smooth opening of the doors, gaps between the door panels and the walls and floor cannot be totally eliminated. Depending on the country where the building code is enforced, the maximum permissible door gap requirement varies substantially. To better understand the influence of gap sizes on the smoke spread, a numerical study is performed on the different door gap configurations affecting the smoke egress in an enclosure fire. The results show that the height of the door gaps has a significant effect on the pressure and temperature distribution in controlling the smoke spreading. Larger door gaps have shown to allow more hot smoke transgressing through the door gaps as well as cold air re-entraining back into the burn room. Fire-rated door with a 3 mm door gap have demonstrated to be the best measure for impeding smoke spread while maintaining reasonable smoothness for the door movement.  相似文献   

8.
研究设有内天井的高层建筑烟气流动及火灾蔓延特征,分析其对防火分区和安全疏散的影响。采用性能化消防设计的方法,对某设置74.65 m、55.95 m双内天井的一类高层建筑,建立火灾发展模型、设计火灾场景,用CFD火灾模拟软件进行数值模拟。结果表明:该建筑利用内天井自然排烟时,各火灾场景均能满足各层人员疏散的性能指标,而在内天井四周环廊上设置挡烟垂壁则影响烟气的顺畅排出,缩短了危险来临时间,增大了火灾的危害性。提出内天井式建筑宜利用烟囱效应优先采用自然排烟方式,烟气控制宜疏堵结合,以疏导为主的设计理念。  相似文献   

9.
10.
更正说明     
室内火灾具有较高的危险性,是建筑火灾造成人员伤亡和财产重大损失的灾害之首。利用计算流体动力学(CFD)的方法,建立了室内火灾时期烟气流动的三维大涡数值模型,目的是通过对火灾烟气流动的数值模拟,为多室火灾的控制和人员救助提供理论基础。模拟结果认为,火灾及附近地区温度较高,烟流浓度较大,高温引燃其他易燃物品的可能性加大。通风与火灾的发展状态存在密切关系,通风既能降低室内温度,加快烟流及有毒有害气体的扩散速度,同时也为火灾的进一步发展提供条件。从模拟结果与实验验证可得出结论:火源功率大小及房屋的几何尺寸影响着火灾程度、温度及烟流浓度的分布和变化,数值计算的结果总体上与实测结果存在较好的一致性。  相似文献   

11.
Forecasting building fire growth and smoke dispersion is a challenging task but can provide early warnings to first responders and building occupants and thus significantly benefit active building fire protection. Although existent computer simulation models may provide acceptable estimations of smoke temperature and quantity, most simulations are still not able to achieve real-time forecast of building fire due to high computational requirements, and/or simulation accuracy subject to users’ inputs. This paper investigates one of the possibilities of using ensemble Kalman filter (EnKF), a statistical method utilizing the real-time sensor data from thermocouple trees in each room, to estimate the spread of an accidental building fire and further forecast smoke dispersion in real time. A general approach to forecasting building fire and smoke is outlined and demonstrated by a 1:5 scaled compartment fire experiment using a 1.0 kW to 2.8 kW propane burner as fire source. The results indicate that the EnKF method is able to forecast smoke transport in a multi-room building fire using 40 ensemble members and provide noticeable accuracy and lead time. Unlike other methods that directly use measurement data as model inputs, the developed model is able to statistically update model parameters to maintain the forecasting accuracy in real time. The results obtained from the model can be potentially applied to assist mechanical smoke removal, emergency evacuation and firefighting.  相似文献   

12.
Heat release rates of burning gasoline and wood fires in a room were studied by computational fluid dynamics (CFD). Version 5.5.3 of the software Fire Dynamics Simulator (FDS), which is the latest one available, was selected as the CFD simulation tool. Predicted results were compared with two sets of reported data from full-scale burning tests. In the two sets of experiments, the scenarios were set at gasoline pool fire and wood chipboard fire with gasoline respectively. The input heating rate of gasoline pool fire based on experimental measurements was used in the first set of experiments. Three scenarios G1, G2 and G3 with different grid systems were simulated by CFD. The grid system of scenario G2 gave more accurate prediction, which was then used to study the second set of experiments on wood chipboard with gasoline. The combustion model in FDS was used in wood chipboard fire induced by gasoline pool. The wood chipboard was allowed to burn by itself using the pyrolysis model in FDS. The effects of the boundary conditions on free openings for the same set of experiments were studied by three scenarios SOB1, SOB2 and SOB3. Boundary condition SOB2 gave more reliable prediction among the three boundary conditions. Two other scenarios on the effect of moisture content of wood were also studied. The predicted HRR curve was found to agree better with experiment in using SOB2.  相似文献   

13.
Ultra-high-rise buildings allow for the efficient use of land, but they are vulnerable to disasters such as fires. Therefore, the development of network models for analyzing the characteristics of smoke movement in ultra-high-rise buildings is necessary for cost-effective design of smoke control systems and operation decisions. A new network-based smoke control program, CAU_ESCAP, is developed in this study, which is a program that can consider the energy transfer. CAU_ESCAP is validated with existing programs, ASCOS and COSMO, by analyzing the smoke movement. After that, fire in an ultra-high-rise building of 55 stories is applied with CAU_ESCAP for analyzing the smoke movement and the mass flow rate of the smoke control system due to the variation of heat release rate and door conditions of the fire floor. The pressure difference between the fire room and the protecting area does not vary in the closed-door case in the fire room, but vary significantly in the opened-door case. Therefore, the smoke from fire would be spread to other spaces if there is no instantaneous increase in the mass flow rate of pressurization when the door is opened by occupants for evacuation.  相似文献   

14.
多层建筑火灾烟气运动的数值模拟   总被引:2,自引:2,他引:2  
阐述了烟气运动的数学模型.应用CFD技术对多层建筑火灾产生的烟气运动进行了模拟,分析了烟气的运动状况,初步论述了CFD技术的优缺点。  相似文献   

15.
《Fire Safety Journal》2005,40(2):99-119
A novel hybrid fire model combining the traditional field and zone modeling approaches to simulate the fire smoke propagation in a multi-storey building is presented in this paper. In the hybrid model, the field model is used to model the fire smoke movement in rooms with complex fire-induced airflow where the two-layer zone assumption of the zone model is not valid, e.g. in the room of fire origin. The zone model is used to model the fire smoke propagation in the rooms/corridors where the hot smoke layer is well stratified and the smoke movement can be reasonably simulated based on the two-zone concept. The fundamentals of the hybrid fire model are presented and discussed in this paper. The interface treatment between the field model and the zone model is presented in detail. In addition, some examples highlighting the application of the new hybrid model to simulate the smoke propagation in a multi-storey building are also presented. The hybrid model provides a more accurate prediction of fire smoke propagation and consumes less computational resources in comparison to the full zone and full field models, respectively.  相似文献   

16.
在调研分析国内外长大隧道疏散模式的基础上,以虹梅南路隧道为研究对象,采用CFD软件对不同排烟方式下隧道火灾进行数值模拟,结果表明:不同的排烟方式下隧道内烟雾和温度场纵向分布扩散规律不同,采用单侧排烟时,烟雾向火源下游聚集,温度升高很快,有害气体浓度升高,无法提供合适的逃生环境;而采用双侧排烟时,烟雾向两侧蔓延,浓度和温度较小,满足火灾通风要求。最后,通过数值模拟人员疏散过程,计算结果表明,现有的排烟措施能够满足疏散安全要求。  相似文献   

17.
以虚拟样机模拟为代表的计算机辅助工程(Computer Aid Engineering,简称CAE),给工程、科学以至人类社会带来急剧的革命性变化。结合钢结构建筑构件耐火性能的特点,应用建筑防火安全性能化分析的理念对钢结构建筑发生火灾的热烟流动情况进行研究。通过一个实例运用计算机流体力学模拟技术对分析的建筑建模,对模型与建筑实际火灾相似性进行初步计算机数值模拟研究并对火灾情况下钢结构的结构反应进行分析。  相似文献   

18.
Proper locating of a very early smoke detector apparatus (VESDA) in cleanrooms is an important issue for fire safety. The main aim of this study is to analyse the proper locations of a VESDA by determining the trajectories of smoke particles in the early stages from a fire in a vertical laminar flow clean room using computation fluid dynamics (CFD). The CFD model was first verified by experimental data of a reduced-scale clean room. Several influential factors on the trajectories of smoke particles including particle size, fire source temperature and fire location were then studied for a full-scale clean room. Results show that the fire source is the most notable factor influencing the trajectories of smoke particles. When the fire source was located at the centre of the room, the smoke particles travelled to the centre of the return air plenum (RAP). If the fire started close to the return air shaft (RAS), the smoke particles reached the RAP close to the top. If the fire started far away from the RAS, the smoke particles arrived at the RAP close to the bottom.  相似文献   

19.
对贵州一起"三合一"场所火灾进行建模重构,依据真实火灾数据,利用FDS软件设置相关参数重现火灾的发展过程,得到温度、烟气蔓延数据,并与实际火灾现场相应部位的痕迹特征进行对照,验证了起火部位和火灾蔓延发展过程.通过温度、CO体积分数切片以及相对有效暴露剂量(FED)的综合分析,对最终人员在高温与烟气的共同作用下死亡做出了...  相似文献   

20.
为研究单室墙角火火灾壁面烟熏痕迹特征,采用1/3尺寸火灾试验还原单室墙角火火灾,测定壁面不同点的温度及烟气蔓延速度,研究火源在不同位置时的壁面烟熏痕迹特征;利用PyroSim软件模拟烟气蔓延过程。结果表明:火源位于房间中间时,在屋顶呈现圆形痕迹;火源在墙角时,两边侧墙和墙角顶部形成明显烟熏痕迹;墙角火在墙角位置的温度和烟气蔓延速度高于房间中间起火;试验结果与模拟结果吻合。试验结果可为调查墙角火火灾提供理论及试验依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号