首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Electrical resistivity and Seebeck (S) measurements were performed on (La1−xSrx)MnO3 (0.02x0.50) and (La1−xSrx)CoO3 (0x0.15) in air up to 1073 K. (La1−xSrx)MnO3 (x0.35) showed a metal-to-semiconductor transition; the transition temperature almost linearly increased from 250 to 390 K with increasing Sr content. The semiconductor phase above the transition temperature showed negative values of S. (La1−xSrx)CoO3 (0x0.10) showed a semiconductor-to-metal transition at 500 K. Dominant carriers were holes for the samples of x0.02 above room temperature. LaCoO3 showed large negative values of S below ca. 400 K, indicative of the electron conduction in the semiconductor phase.  相似文献   

2.
This paper presents an investigation on the NO oxidation properties of perovskite oxides. La1−xCexCoO3 (x = 0, 0.05, 0.1, 0.2, 0.3, 0.4) perovskite-type oxides were synthesized through a citrate method and characterized by XRD, BET and XPS. The catalytic activities were enhanced significantly with Ce substitution, and achieved the best when x was 0.2, but decreased at higher x values. The performed characterizations reveal that the adsorbed oxygen on the surface plays an important role in the oxidation of NO into NO2. The surface compounds after the co-adsorption of NO and O2 at room temperature, were investigated by DRIFTS and TPD experiments. Three species: the bridging nitrate, the hyponitrites and the monodentate nitrate, were formed on the surface. The order of thermal stabilities was as follows: monodentate > hyponitrite > bridging. Among them, only the monodentate nitrate which decomposed at above 300 °C, would desorb NO2 into the gas phase. When Ce was added, the temperature of monodentate nitrate desorption became low and the adsorption of the other two species decreased. This might be related to the oxidation state of Co on the surface. Analysis by synthesizing the characterization results and catalytic activity data shows that large amounts of adsorbed oxygen, small amount of inactive compounds on the surface and low NO2 desorption temperature are favorable for the oxidation of NO.  相似文献   

3.
Nanopowders of lithium niobate LiNbO3 and rare earth (RE) substituted LiNbO3–RExLi1−xNbO3, x=0.05 (RE: La, Pr, Sm, Er) were synthesized using a simple technique as the polymerizable complex method, based on the Pechini-type reaction route. A mixed solution of citric acid and ethylene glycol with Li, Nb and RE ions was polymerized. The formation mechanism, the homogeneity and the structure of the obtained powders have been investigated by thermogravimetry, X-ray diffraction, Raman spectroscopy and scanning electron microscopy measurements. The X-ray diffraction analysis indicated the formation of perovskite-type oxides, which crystallize in rhombohedral system when the Li–Nb and Li–Nb–RE polymeric precursors were treated at temperatures as low as 500 °C for 2 h. No additional crystalline phases formed during calcinations, but shifting of the XRD peaks with the RE ion substitution for Li suggested that structural modification inside the LN is the same. The Raman spectroscopy data of LiNbO3 substituted by RE were compared to the results of the unsubstituted system. The substitution dependence of frequency and damping in the A1(TO2), A1(TO3) and E(TO2) modes were employed to deduce the incorporation site of RE ions in LiNbO3.  相似文献   

4.
A series of the Ce1−xCuxO2−x/Al2O3/FeCrAl catalysts (x = 0–1) were prepared. The structure of the catalysts was characterized using XRD, SEM and H2-TPR. The catalytic activity of the catalysts for the combustion of methane was evaluated. The results indicated that in the Ce1−xCuxO2−x/Al2O3/FeCrAl catalysts the surface phase structure were the Ce1−xCuxO2−x solid solution, -Al2O3 and γ-Al2O3. The surface particle shape and size were different with the variety of the molar ratio of Ce to Cu in the Ce1−xCuxO2−x solid solution. The Cu component of the Ce1−xCuxO2−x/Al2O3/FeCrAl catalysts played an important role to the catalytic activity for the methane combustion. There were the stronger interaction among the Ce1−xCuxO2−x solid solution and the Al2O3 washcoats and the FeCrAl support.  相似文献   

5.
Bi0.5(Na1−xyKxAgy)0.5TiO3 piezoelectric ceramics were prepared by conventional ceramic processes. X-ray diffraction patterns show a pure perovskite structure, indicating that the K+ and Ag+ ions substitute for the Na+ ions in Bi0.5Na0.5TiO3. The temperature dependence of the dielectric constant and dissipation factor shows all ceramics to experience two phase transitions: from ferroelectric to anti-ferroelectric and from anti-ferroelectric to paraelectric. The transition temperature from ferroelectric to anti-ferroelectric and the temperature at which the dielectric constant reaches its maximum value decrease with the increase of K+ amount. At room temperature, the ceramics containing 17.5–20 mol% K+ and 2 mol% Ag+ exhibit high piezoelectric constant (d33 = 180 pC/N) and high electromechanical coupling factor (kp = 35%).  相似文献   

6.
The sintering properties of La1−xSrxFeO3−δ (x = 0.1, 0.25) mixed conductors have been investigated with particular emphasis on the effect of secondary phases due to cation non-stoichiometry (±5 mol% La excess and deficiency). Secondary phases, located at grain boundaries in cation non-stoichiometric materials, increased the sintering temperature compared to single-phase materials. Extensive swelling in final stage of sintering was observed in all materials, which resulted in micro-porous materials. The swelling was most pronounced in the phase pure and two-phase materials due to La-deficiency, while refractory secondary phases in La-excess materials inhibited both sintering, grain growth and swelling. In La-deficient materials, formation of molten secondary phases resulted in rapid swelling due to viscous flow. The present findings demonstrated the importance of controlling sintering temperature and time, as well as careful control of the cation stoichiometry of La1−xSrxFeO3−δ in order to achieve fully dense and homogenous La1−xSrxFeO3−δ ceramics.  相似文献   

7.
Pt-Rh/CexZr1−xO2-Al2O3 with 0.6 and 1.0 wt.% noble metal loadings were prepared and characterized for their metal dispersion with respect to CexZr1−xO2-free Pt-Rh/Al2O3 in fresh, thermally aged and oxychlorinated states. Thermal ageing at 973 K led to loss of metal dispersion in all cases but to negligible effect on the dispersion of the CexZr1−xO2 component where present. Oxychlorination was able to fully recover metal dispersion in all cases but led to different effects on the redox properties of CexZr1−xO2 which appeared to be related to the metal loadings. Despite showing improved dispersion following regeneration, higher loaded catalyst showed no improvement in light-off performance for either NO reduction or CO oxidation and showed poorer oxygen storage (OSC) ability, particularly at higher temperatures. Lower loaded catalyst showed improved dispersion, improved OSC and reduced light-off temperatures for NO reduction and CO oxidation after oxychlorination compared to that in the thermally aged state.  相似文献   

8.
R. Karita  H. Kusaba  K. Sasaki  Y. Teraoka   《Catalysis Today》2007,126(3-4):471-475
K2NiF4-type La0.2Sr1.8MnO4 was synthesized by nitrate (ND) and nitrate/acetate (NAD) decomposition methods as well as solid-state reaction. Single-phase oxide was obtained at 550 °C by the ND method just after the decomposition of Sr(NO3)2 and at 1000 °C by the NAD method after the decomposition of SrCO3. The K2NiF4-type oxide was hardly formed by the solid-state reaction. In the La–Sr–Mn system, an intermediate compound of SrCO3, if present or formed during the decomposition process, interfered with the low-temperature formation of the K2NiF4-type oxide because of its high decomposition temperature about 1000 °C. The ND method used only metal nitrates and no starting materials with carbon source, so that the low-temperature synthesis of the K2NiF4-type oxide was realized without forming obstinate intermediate compound of SrCO3. The low-temperature synthesis was possible for LaxSr2−xMnO4 with the substitution of La (0 < x < 0.5) and not for La0.2A1.8MnO4 (A = Ca and Ba). The effect of A-site cations on the K2NiF4-phase formation was discussed from the geometric aspect.  相似文献   

9.
Monoclinic Li3V2−xAlx(PO4)3 with different Al3+ doping contents (x = 0, 0.05, 0.08, 0.10 and 0.12) have been prepared by a facile aluminothermal reaction. Aluminum nanoparticles have been used as source for Al3+ and nucleus for Li3V2−xAlx(PO4)3 nucleation as well as reducing agent in the aluminothermal strategy. The products were investigated by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM) and electrochemical methods. The XRD results show that the as-obtained Li3V2−xAlx(PO4)3 has a phase-pure monoclinic structure, irrespective of the Al3+ doping concentration. Electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) results reveal that the charge-transfer resistance of the Li3V2(PO4)3 is reduced and the reversibility is enhanced after V3+ substituted by Al3+. In addition, The Li3V2−xAlx(PO4)3 phases exhibit better cycling stability than the pristine Li3V2(PO4)3.  相似文献   

10.
A solid solution of spinel (2/3)Li(Li1/3Ti5/3)O4–(1/3)Li(Ni1/2Ti3/2)O4 was prepared, and its structural/electrochemical properties were compared with Li(Li1/3Ti5/3)O4 to identify the effect of doping to the structural invariance of Li(Li1/3Ti5/3)O4. The solid solution retained the zero strain characteristic of Li(Li1/3Ti5/3)O4 during discharge/charge with an excellent cycle stability, while the rate capability was notably improved. However, a reversible broadening of the XRD peak was observed at the end of discharge, indicating some structural changes. XANES measurements showed that the oxidation state of Ti was +4 and that of Ni was +2 in the solid solution.  相似文献   

11.
Structural (XRD) and spectroscopic (EPR, IR and Raman) investigations were performed to elucidate the influence of CeO2 content on the phase composition and surface chemistry of CexZr1−xO2 solid solutions (x = 0.10–0.85), interacting with NO and NO2 in the absence and presence of oxygen. Strong influence of ceria loading on the adsorption modes of both nitrogen oxides and the nature of the resultant surface species was revealed. Adsorption of NO led to formation of mononitrosyl complexes, dimers and N2O, whereas interaction of NO2 with the ceria–zirconia catalyst resulted in the adsorbate disproportionation or coupling, depending on the sample composition.  相似文献   

12.
A Li[Ni0.4Co0.3Mn0.3]O2 cathode was modified by applying a La2/3−XLi3XTiO3 (LLT) coating. Transmission electron microscope (TEM) images reveal that the coating layer consists of nanoparticles. The coated cathode demonstrated an enhanced rate capability, discharge capacity, and cyclic performance than the uncoated cathode. However, the influence of the coating upon these electrochemical properties is highly dependent upon the composition of the LLT coating layer. Coating layers having high La and low Li contents, such as La0.67TiO3, effectively improved the rate capability of the cathode. However, coating layers with a low La and high Li content greatly enhanced the discharge capacity of the cathode under high cut-off voltage (4.8 V) conditions. Overall, the thermal stability of the Li[Ni0.4Co0.3Mn0.3]O2 electrode was improved by the LLT coating. Storage tests confirmed that the La2/3−XLi3XTiO3 coating dramatically suppressed the dissolution of transition metals into the electrolyte.  相似文献   

13.
The current work is devoted to study of CO interaction with PdO/Al2O3–(Cex–Zr1−x)O2 catalysts. Ceria–zirconia–alumina supports with different Ce/Zr ratio were prepared by sol–gel technique. The FT-IR characterization of CO adsorbed at −120 and 25 °C on oxidized and reduced samples revealed that Ce/Zr ratio modifies the surface properties of support and oxidation state of palladium. The catalyst with Ce/Zr molar ratio 0.5/0.5 was characterized with the highest ability to stabilize palladium in oxide state and the highest activity to oxidize CO. Redox treatment of catalysts improves their catalytic activity.  相似文献   

14.
Nanoparticles of CexZr1−xO2 (x = 0.75, 0.62) were prepared by the oxidation-coprecipitation method using H2O2 as an oxidant, and characterized by N2 adsorption, XRD and H2-TPR. CexZr1−xO2 prepared had single fluorite cubic structure, good thermal stability and reduction property. With the increasing of Ce/Zr ratio, the surface area of CexZr1−xO2 increased, but thermal stability of CexZr1−xO2 decreased. The surface area of Ce0.62Zr0.38O2 was 41.2 m2/g after calcination in air at 900 °C for 6 h. TPR results showed the formation of solid solution promoted the reduction of CeO2, and the reduction properties of CexZr1−xO2 were enhanced by the cycle of TPR-reoxidation. The Pd-only three-way catalysts (TWC) were prepared by the impregnation method, in which Ce0.75Zr0.25O2 was used as the active washcoat and Pd loading was 0.7 g/L. In the test of Air/Fuel, the conversion of C3H8 was close to 100% and NO was completely converted at λ < 1.025. The high conversion of C3H8 was induced by the steam reform and dissociation adsorption reaction of C3H8. Pd-only catalyst using Ce0.75Zr0.25O2 as active washcoat showed high light off activity, the reaction temperatures (T50) of 50% conversion of CO, C3H8 and NO were 180, 200 and 205 °C, respectively. However, the conversions of C3H8 and NO showed oscillation with continuously increasing the reaction temperature. The presence of La2O3 in washcoat decreased the light off activity and suppressed the oscillation of C3H8 and NO conversion. After being aged at 900 °C for 4 h, the operation windows of catalysts shifted slightly to rich burn. The presence of La2O3 in active washcoat can enhance the thermal stability of catalyst significantly.  相似文献   

15.
Attrition and ball milling are used as mechanical means to reduce grain size of optimized fast oxide-ion conductors La2−xRxMo2−yWyO9 (R: rare earths). Dilatometry is used to determine the optimal sintering conditions in order to obtain high density samples (greater than 96% of relative density) with help of scanning electron microscopy to characterize their microstructure. The optimal sintering temperatures are highly dependent on the chemical composition, and therefore identical annealing temperatures do not warrant similar relative densities. Complex impedance spectroscopy show that above the transition temperature of La2Mo2O9 at 580 °C, the conductivity of all the studied compounds is lower than that of the parent compound, whereas just below the transition, in most cases the stabilization of the cubic phase increases conductivity. An interesting result is that tungsten substitution, which stabilizes La2Mo2O9 against reduction, does not affect significantly the oxide ion conduction.  相似文献   

16.
A single-step complex decomposition method for the synthesis of bulk and alumina-supported γ-Mo2N catalysts is described. The complex precursor (HMT)2(NH4)4Mo7O24·2H2O (HMT: hexamethylenetetramine) is converted to γ-Mo2N under a flow of Ar in a temperature range of 823–1023 K. Furthermore, decomposition of the precursor in a NH3 flow forms γ-Mo2N in a temperature range of 723–923 K. Compared with direct decomposition of the precursor in Ar, the reaction in NH3 shows obvious advantages that the nitride forms at a lower temperature. In addition, alumina-supported γ-Mo2N catalysts with different nitride loadings can be prepared from the alumina-supported complex precursor in the Ar or NH3 flow. The resultant catalysts exhibit good dibenzothiophene HDS activities, which are similar to the γ-Mo2N/γ-Al2O3 prepared by traditional TPR method. The catalyst prepared by decomposition in an Ar flow exhibits highest activity. It proves that such a single-step complex decomposition method possesses the potential to be a general route for the preparation of molybdenum nitride catalysts.  相似文献   

17.
We have stabilized the perovskite La2/3TiO3 by adding LaFeO3 and shown that in general the stabilization mechanism for the (1 − x)La2/3TiO3–xLaFeO3 mixture involves the formation of a solid solution for compositions with x ≥ 0.04. The crystal structure of the solid solution transforms from orthorhombic to tetragonal at x = 0.2, becomes cubic in the range 0.3 < x < 0.8, and transforms again into orthorhombic (typical for pure LaFeO3) for values greater than 0.8. Detailed impedance-spectroscopy measurements for various compositions and conditions showed that the limiting step in the conduction mechanism was conduction across the grain boundaries. In the concentration range 0.04 < x < 0.25 the room temperature conductivity increases up to 0.0017 S cm−1, after which it decreases again. Part of the initial increase is probably due to the formation of free electrons in accordance with (FeTi)′ → (FeTi)x + n′. Other defect-formation mechanisms are also discussed, but are ruled out for a variety of reasons. Another interesting phenomenon that also affected the average conductivity was identified, i.e., the variation of the average particle size with composition.  相似文献   

18.
Dispersing La2O3 on δ- or γ-Al2O3 significantly enhances the rate of NO reduction by CH4 in 1% O2, compared to unsupported La2O3. Typically, no bend-over in activity occurs between 500° and 700°C, and the rate at 700°C is 60% higher than that with a Co/ZSM-5 catalyst. The final activity was dependent upon the La2O3 precursor used, the pretreatment, and the La2O3 loading. The most active family of catalysts consisted of La2O3 on γ-Al2O3 prepared with lanthanum acetate and calcined at 750°C for 10 h. A maximum in rate (mol/s/g) and specific activity (mol/s/m2) occurred between the addition of one and two theoretical monolayers of La2O3 on the γ-Al2O3 surface. The best catalyst, 40% La2O3/γ-Al2O3, had a turnover frequency at 700°C of 0.05 s−1, based on NO chemisorption at 25°C, which was 15 times higher than that for Co/ZSM-5. These La2O3/Al2O3 catalysts exhibited stable activity under high conversion conditions as well as high CH4 selectivity (CH4 + NO vs. CH4 + O2). The addition of Sr to a 20% La2O3/γ-Al2O3 sample increased activity, and a maximum rate enhancement of 45% was obtained at a SrO loading of 5%. In contrast, addition of SO=4 to the latter Sr-promoted La2O3/Al2O3 catalyst decreased activity although sulfate increased the activity of Sr-promoted La2O3. Dispersing La2O3 on SiO2 produced catalysts with extremely low specific activities, and rates were even lower than with pure La2O3. This is presumably due to water sensitivity and silicate formation. The La2O3/Al2O3 catalysts are anticipated to show sufficient hydrothermal stability to allow their use in certain high-temperature applications.  相似文献   

19.
Layered -titanate materials, NaxMx/2Ti1−x/2O2 (M=Co, Ni and Fe, x=0.2–0.4), were synthesized by flux reactions, and electrical properties of polycrystalline products were measured at 300–800 °C. After sintering at 1250 °C in Ar, all products show n-type thermoelectric behavior. The values of both d.c. conductivity and Seebeck coefficient of polycrystalline Na0.4Ni0.2Ti0.8O2 were ca. 7×103 S/m and ca. −193 μV/K around 700 °C, respectively. The measured thermal conductivity of layered -titanate materials has lower value than conductive oxide materials. It was ca. 1.5 Wm−1 K−1 at 800 °C. The estimated thermoelectric figure-of-merit, Z, of Na0.4Ni0.2Ti0.8O2 and Na0.4Co0.2Ti0.8O2 was about 1.9×10−4 and 1.2×10−4 K−1 around 700 °C, respectively.  相似文献   

20.
Lanthanum strontium manganite (La1−xSrxMnO3, LSM) powders were synthesized by polymerizable complex method, based on complexation of metal ions (MI) with citric acid (CA) and polyesterification between CA and ethylene glycol (EG). Firstly, the effect of the molar ratio of CA:MI (=1–3) was investigated on the synthesis of La0.7Sr0.3MnO3 powders, which were characterized by thermal analysis (TGA/DTA), X-ray diffraction (XRD), and scanning electron microscopy (SEM). The results indicated that the molar ratio CA:MI = 3 is adequate for a good crystallization of pure perovskite phase after calcination, with nanometric crystallite sizes and porous microstructure. For the La0.7Sr0.3MnO3 sample synthesized with CA:MI ratio of 3, it was investigated the effect of calcination temperature, showing that the perovskite structure is better crystallized at 900 °C, without secondary phase formation. Using this same CA:MI ratio and calcination temperature, powders with different Sr content (x = 0.2–0.4) were synthesized, with surface areas of 4–10 m2 g−1. These powders were sintered at 1100 °C to produce porous pellets. The porosity of the sintered pellets and the electrical conductivity, measured by two-probe technique, increased with increasing Sr content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号