首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
以二(三苯基膦)二氯化钯[Pd(PPh3)2Cl2]或醋酸钯[Pd(OAc)2]与三环己基膦作为催化剂,通过Sonagashira或Suzuki碳-碳偶联反应制备了3种含2,3-二(4'-辛氧基苯基)-5,8-二硒吩基喹喔啉单元的聚苯撑乙炔类(P1)、聚芴类(P2)和聚咔唑类(P3)π-共轭交替共聚物。经傅里叶变换红外光谱、氢核磁共振谱、紫外-可见光谱、荧光光谱、循环伏安、X射线粉末衍射、热重和凝胶渗透色谱等测试手段对其进行了表征并研究共聚物在CHCl3-CF3COOH混合溶液中的酸致变色行为。结果表明,得到的共聚物在甲苯、氯仿、四氢呋喃等有机溶剂里具有很好的溶解性,3种共聚物在CHCl3和薄膜状态下长波长处的紫外-可见最大吸收波长分别在546 nm、542 nm、538 nm和586 nm、552 nm、558 nm处出现。共聚物的光学能隙分别为1.80 e V、1.86 e V和1.84 e V。与P1和P2相比,P3显示较好的酸致变色行为并且三氟乙酸浓度在1.346×10-3~13.46×10-3mol/L范围之间其表现出酸浓度与吸光度之间的线性关系。通过循环伏安测试,共聚物均具有一定的p掺杂和空穴传输行为。  相似文献   

2.
以二价钯配合物作为催化剂,通过Sonogashira或Suzuki碳碳偶联反应制备了3种含2,3-二(5′-辛基噻吩基)喹喔啉单元的聚苯撑乙炔类(P1)、聚芴类(P2)和聚咔唑类(P3)π-共轭荧光聚合物。经傅里叶变换红外光谱、核磁共振氢谱和X射线粉末衍射对其结构进行了表征。利用紫外-可见光谱、荧光光谱和循环伏安等测试手段对其光学与电化学性能进行了研究,并研究了聚合物在CHCl3-CF3COOH溶液中的酸致变色行为。结果表明,3种聚合物在氯仿溶液和薄膜状态下的长波长处的紫外-可见最大吸收峰分别出现在449nm、420nm、418nm和538nm、425nm和420nm处。3种聚合物在氯仿溶液和薄膜状态下的荧光发射峰分别出现在556nm、529nm、558nm和599nm、556nm、569nm处,其在薄膜状态下分别发深红色、亮黄色和橙红色荧光。聚合物的相对荧光量子效率分别为18.1%、26.6%和16.8%。与P1和P3相比,P2显示较好的酸致变色行为,并在三氟乙酸浓度范围为2.692×10^(-3)~40.38×10^(-3) mol/L之间表现出酸浓度与吸光度之间优良的线性关系。通过循环伏安测试,聚合物均具有一定的空穴传输行为。  相似文献   

3.
以二价钯配合物作为催化剂,通过Sonogashira或Suzuki碳碳偶联反应制备了3种含2,3-二(5′-辛基噻吩基)喹喔啉单元的聚苯撑乙炔类(P1)、聚芴类(P2)和聚咔唑类(P3)π-共轭荧光聚合物。经傅里叶变换红外光谱、核磁共振氢谱和X射线粉末衍射对其结构进行了表征。利用紫外-可见光谱、荧光光谱和循环伏安等测试手段对其光学与电化学性能进行了研究,并研究了聚合物在CHCl3-CF3COOH溶液中的酸致变色行为。结果表明,3种聚合物在氯仿溶液和薄膜状态下的长波长处的紫外-可见最大吸收峰分别出现在449nm、420nm、418nm和538nm、425nm和420nm处。3种聚合物在氯仿溶液和薄膜状态下的荧光发射峰分别出现在556nm、529nm、558nm和599nm、556nm、569nm处,其在薄膜状态下分别发深红色、亮黄色和橙红色荧光。聚合物的相对荧光量子效率分别为18.1%、26.6%和16.8%。与P1和P3相比,P2显示较好的酸致变色行为,并在三氟乙酸浓度范围为2.692×10~(-3)~40.38×10~(-3) mol/L之间表现出酸浓度与吸光度之间优良的线性关系。通过循环伏安测试,聚合物均具有一定的空穴传输行为。  相似文献   

4.
以二价钯配合物作为催化剂,将2-异丙基氨基-4,6-二(2′-溴-3,4-乙撑二氧噻基)-1,3,5-三嗪分别与1,4-二乙炔基-2,5-二辛氧基苯、1,4-二乙炔基-2,5-二(十二烷氧基)苯、2,7-二(4,4,5,5-四甲基硼烷基)-9,9-二辛基芴交替共聚合成了3种π-共轭聚合物P1,P2和P3。经傅里叶变换红外光谱、氢核磁共振谱、紫外-可见光谱、荧光光谱、循环伏安法、X射线粉末衍射和凝胶渗透色谱等测试手段对其进行了表征,并对聚合物在CHCl3溶液的酸致变色行为进行了研究。结果表明,得到的聚合物在CHCl3中的紫外-可见最大吸收波长分别在443nm和431nm处出现。在CHCl3溶液中聚合物P1,P2和P3最大发射峰分别位于507nm,511nm和543nm,其聚合物薄膜的最大发射波长分别为573nm,557nm和559nm。与P1和P2相比,P3的酸致变色敏感性高于2个数量级。聚合物P1和P2均在-2.0~0V出现n-掺杂峰。聚合物X射线衍射谱图显示聚合物均有一定的结晶性。  相似文献   

5.
以二价镍配合物(Ni(dppp)Cl2)作为催化剂,2-二异丙基氨基-4,6-二氯均三嗪分别与3-丁基-2,5-二溴噻吩格氏(Grignard)试剂、3-辛基2,5-二溴噻吩格氏试剂、3-十二烷基-2,5-二溴噻吩格氏试剂交替共聚合成了3种含2-二异丙基氨基均三嗪的聚合物P1,P2和P3。并经傅里叶变换红外光谱、氢核磁共振谱、紫外-可见光谱、荧光光谱、循环伏安、X射线粉末衍射和凝胶渗透色谱等测试手段对其进行了表征,对聚合物P1在CHCl3溶液中的酸致变色行为进行了研究。结果表明,得到的聚合物在甲苯、氯仿、四氢呋喃(THF)等有机溶剂中溶解性好,3种聚合物的紫外-可见最大吸收波长在372 nm处出现,在CHCl3溶液中聚合物P1,P2,P3最大发射峰分别位于478 nm,549 nm和523 nm。聚合物均在-1.8~0 V出现n-掺杂峰。通过X射线衍射测试聚合物均有一定结晶性但结晶性较差。  相似文献   

6.
通过Sonogashira偶联反应,以二(三苯基膦)二氯化钯作为催化剂,将3,6-二氯-1,2,4,5-四嗪分别与1,4-二乙炔基-2,5-二辛氧基苯和1,4-二乙炔基-2,5-二(十二烷氧基)苯交替共聚合成了主链中含四嗪单元的新型聚对苯撑乙炔类π-共轭聚合物P1、P2。经傅里叶变换红外光谱、核磁共振氢谱、紫外-可见光谱、荧光光谱、循环伏安、X射线粉末衍射、热重分析等测试手段对共聚物P1、P2进行了表征。结果表明,所得聚合物P1和P2对常用有机溶剂的溶解性不好。与P2相比,P1有一定的结晶性。P1、P2的紫外-可见最大吸收波长均在450nm处出现。P1与P2在CHCl3溶液中的最大发射峰出现在480nm处。与2-十二烷基-1,2,3-苯并三氮唑聚对苯撑乙炔类聚合物相比,P1、P2具有较高的相对荧光量子效率。循环伏安测试显示聚合物P1、P2均在0~2.0V出现明显的p-掺杂峰。  相似文献   

7.
以苯并噻二唑作为初始原料,通过Sonogashira、Suzuki反应将4,7-二溴-2-己基-1,3-苯并咪唑单体分别与带有不同烷氧基链的对苯乙炔、9,9-二辛基芴进行交替共聚,得到了聚[2-己基-1,3-苯并咪唑-1,4-二乙炔基-2,5-二辛氧基苯](P1)、聚[2-己基-1,3-苯并咪唑-1,4-二乙炔基-2,5-二(十二烷氧基)苯](P2)和聚[2-己基-1,3-苯并咪唑-9,9-二辛基芴](P3)。采用红外光谱、核磁共振等手段对单体和共聚物的结构进行了表征,利用紫外-可见吸收光谱、荧光量子效率测试和循环伏安法对聚合物的光、电化学性能进行了探讨。结果表明,共聚物P1、P2均在445 nm处出现紫外-可见吸收峰,共聚物P3在376 nm处出现紫外-可见吸收峰。P2、P3共聚物的相对荧光量子效率分别为80%,66.7%,所得共聚物都有较强的荧光性能。P2共聚物在1.3 V处出现氧化掺杂峰,在-1.3 V处出现还原掺杂峰,P3共聚物在0.48 V处出现氧化掺杂峰,0.34 V处出现脱掺杂峰。  相似文献   

8.
通过Stille偶联反应合成了一种D-A-D型单体2,3-二(4'-辛氧基苯基)-5,8-二硒吩基喹喔啉(M7),通过紫外-可见光谱、傅里叶变换红外光谱、核磁共振氢谱等测试手段进行了结构表征。通过电化学聚合制备了聚(5,8-二溴-2,3-双(4'-辛氧基苯基)喹喔啉)。从聚合物薄膜的紫外-可见光谱与循环伏安图计算的光学能隙和电化学能隙分别为1.48 e V和1.45 e V。从光谱电化学结果可以看出,电压从0~1.0 V阶梯变化时,聚合物显示电致变色并且聚合物薄膜颜色由深蓝色(中性态)变成透明的浅黄色(氧化态)。聚合物薄膜在603 nm处的紫外-可见吸收峰随着电压的增加而降低,而在863 nm出现的新吸收峰强度增强。聚合物薄膜在863 nm处的光学对比度和响应时间分别为59%和1.74 s。  相似文献   

9.
以PdCl2(PPh3)2/CuI为催化剂,分别通过N,N′-二氯联苯醌二亚胺和3,3′-二甲基-N,N'-二氯联苯醌二亚胺与1,4-二炔基-2,5-二癸氧基苯共聚,得到共轭聚合物聚[联苯醌二亚胺-co-2,5-二癸氧基-1,4-苯撑乙炔](PBz-PPE)和聚[3,3′-二甲基联苯醌二亚胺-co-2,5-二癸氧基-1,4-苯撑乙炔](PDMBz-PPE)。采用红外光谱(FT-IR)、核磁共振(1H-NMR)、凝胶渗透色谱(GPC)、紫外-可见光谱仪(UV-Vis)等测试手段对共聚物的化学结构和性能进行表征。结果表明,在四氢呋喃和三氟乙酸溶液中,此类共聚物的紫外-可见最大吸收峰分别为410 nm和540 nm;在四氢呋喃中荧光发射峰均为485 nm;相对分子质量均在10000左右;通过循环伏安测试得知,本征态的2种共聚物均有1对氧化还原峰(分别为Epa=0.51 V,Epc=0.41 V和Epa=0.48 V,Epc=0.30 V),经碘掺杂以后2种共聚物的电化学活性均有明显提高,且有2对氧化还原峰。  相似文献   

10.
以4,7-二溴-2-十二烷基-1,2,3-苯并三氮唑和带不同碳数烷基的3-烷基噻吩格式试剂为单体,通过Ni(Ⅱ)配合物催化法分别合成了带有丁基、辛基和十二烷基侧链的共聚物,并采用FT-IR、1H-NMR对其化学结构进行了表征。所得共聚物的M n分别为0.57×104,0.59×104和0.49×104g/mol,其M w(g/mol)分别为1.25×104,1.24×104和0.96×104g/mol。所得共聚物在CHCl3、THF等溶剂中具有较好的溶解和成膜性。聚合物在CHCl3溶液中的紫外-可见最大吸收波长分别为433,432和415 nm,共聚物在固态薄膜状态下的紫外-可见最大吸收波长与溶液比较约红移8nm。3种共聚物表现出较好的荧光性能。  相似文献   

11.
蒽单元嵌入聚噻吩主链能显著调控聚合物的变色性能,但其聚合电位偏高易导致聚合物的成膜质量和性能较差。为降低含蒽单元的单体电聚合电位,通过Stille偶联反应合成了9,10-二(2-噻吩基)蒽单体(Th-An-Th),并分别在BFEE,BFEE+CF_(3)COOH,LiClO_(4)/ACN和LiClO_(4)/PC等聚合媒介中进行电化学聚合。结果表明:Th-An-Th难以通过电化学反应共聚,但可以作为共单体与噻吩(Th),3-甲基噻吩(MeTh),3,4-亚乙基二氧噻吩(EDOT)和硒酸(SePh)在低电位下进行无规共聚,得到系列无规共聚薄膜P1,P2,P3,P4。循环伏安和FTIR测试证实了聚合过程和共聚物的特征结构,光谱电化学测试结果表明,系列共聚物均具有丰富的颜色变换性能,在-0.6 V到1.0 V扫描下,P1,P3,P4膜可实现4种颜色的变化,且表现出良好的近红外变色能力。共聚物薄膜具有较快的开关响应速度和良好的电化学稳定性,P4膜在521 nm处漂白和着色响应时间分别为1.9 s和3.4 s,光学对比度为35.6%,在210次循环变色后,共聚物光学对比度仅损失2.3%,电化学循环400次仍保持82%的电化学活性。  相似文献   

12.
首次采用固相聚合法在室温条件下制备了聚(3,6-二噻基-哒嗪)[P(DThPD)],聚(1,4-二噻基-苯)[P(DThPh)]和聚(4,7-二噻基-2,1,3-苯并噻二唑)[P(DThB)].并用红外光谱、紫外-可见光光谱、荧光光谱、电子扫描显微镜、电子透射显微镜、循环伏安(cyclic voltammogram)等测试方法,对聚合物进行表征.结果表明,固相聚合法合成的P(DThPD)和P(DThPh)具有纳米颗粒串连的棒状或环状结构;P(DThPD)分别在336 nm、450nm和580nm(w)处有吸收峰;P(DThPh)分别在325nm和410nm处有吸收峰;P(DThB)分别在460nm、550nm和700nm处有吸收峰.P(DThPh)和P(DThB)分别在488nm和599nm处有较强的荧光.循环伏安测试表明,固相聚合法合成的3种聚合物均具有较好的电化学活性.  相似文献   

13.
聚合物全固态电致变色器件的制备及性能   总被引:2,自引:0,他引:2  
使用乙烯-乙烯醇共聚物/聚吡咯复合膜和聚醚基氨酯/LiClO4电解质制成全固态电致变色器件.当加上1.0~2.5V的直流电压时,器件颜色由黄色变成棕(蓝)色.详细讨论了器件的UV/VIS光谱变化、掺杂/不掺杂过程的响应时间以及电解质浓度对变色过程的影响.结果显示电致变色器件在800nm时,发生掺杂/不掺杂过程变化有短的响应时间和大的透过率差.  相似文献   

14.
以N,N′-二氯对苯醌二亚胺、2,5-二甲基-N,N′-二氯对苯醌二亚胺与2,5-二溴-3,4-乙撑二氧噻吩为单体,1,3-二(二苯基膦)丙烷二氯化镍(Ⅱ)为催化剂,采用金属配合物催化法合成了聚(N,N′-对苯醌二亚胺-3,4-乙撑二氧噻吩)和聚(2,5-二甲基-N,N′-对苯醌二亚胺-3,4-乙撑二氧噻吩)两种共聚物。通过红外光谱(FT-IR)、核磁共振(1H-NMR)、凝胶渗透色谱(GPC)、X射线衍射(XRD)、紫外分光光度计(UV-Vis)和循环伏安(CV)等测试对其进行了结构表征及性能测试。结果表明,两种共聚物在CF3COOH(TFA)溶液中的UV-Vis最大吸收波长分别在500 nm和511 nm处;氧化还原峰出现在-0.2 V-0.8 V之间;通过碘掺杂后共聚物的电化学窗口拓宽,电化学活性提高。  相似文献   

15.
本工作设计、合成了两种基于三苯基-1,3,5-均三嗪的星形双极性蓝色磷光主体材料:((6-(3-(9-乙基-9H-咔唑-3-基)苯基)-1,3,5-三嗪-2,4-二基)双(3-苯基))双(二苯基氧化膦)(Cz PTBPO)和(3-(4,6-二(3-(9-乙基-9H-咔唑-3-基)苯基)-1,3,5-三嗪-2-基)苯基)二苯基氧化膦(BCz PTPO)。Cz PTBPO和BCz PTPO的荧光发射峰分别位于410 nm和424 nm处,属于深蓝色荧光;由低温磷光的第一发射峰计算得到它们的三线态能级(ET)分别为2. 75 e V和2. 68 e V,与蓝色磷光客体材料FIrpic (2. 65 e V)的能级相匹配;由循环伏安测试计算得到它们的HOMO能级分别为-5. 68 e V和-5. 62 e V,与阳极ITO的功函(-4. 5~-5. 0 e V)相匹配,其LUMO能级分别为-2. 42 e V和-2. 44 e V,可与多数的电子传输材料匹配(如:TPBi为-2. 70 e V),且HOMO与LUMO轨道几乎没有重叠,表明其具有良好的空穴注入和电子传输的双极性质; TG显示两种材料的分解温度(5%质量损失)分别为398℃和387℃,表明其热稳定性非常好; DSC显示其玻璃化温度分别为148℃和134℃,表明其具有无定形态结构及良好的成膜性。因此,Cz PTBPO和BCz PTPO有望作为双极性蓝色磷光主体材料应用于磷光有机发光二极管(Ph OLEDs)。  相似文献   

16.
由2-苯基-5-〔甲基丙烯酰胺基取代苯基〕-1,3,4-噁二唑(OXD)与甲基丙烯酸乙基咔唑酯(CzE-MA)两种单体合成了含噁二唑和咔唑基团的无规共聚物。通过红外、核磁、紫外、荧光、热重、差示扫描量热,凝胶渗透色谱对聚合物进行了表征。测试结果表明共聚物有很好的溶解性,均可溶于常用的有机溶剂,如THF,CHCl2,CHCl3等,其分子量在16950~22500之间。有良好的热稳定性和很高的玻璃化转变温度(Tg=190~222℃),最大吸收波长在220~340nm之间,具有良好的荧光性,其荧光发射波长均在372~451nm范围内,是一类蓝紫色荧光聚合物。共聚物随着CzEMA组分的减少和OXD组分的增加,发射波长蓝移,其中以P(OXD8-CzEMA2)的荧光性最好,荧光量子产率高达0.70。  相似文献   

17.
以苯并噻二唑为初始原料,通过硝化、还原、缩合等反应合成了2种新型单体5,10-二溴-2,3,7,8-二萘基双喹喔啉(M1)和5,10-二溴-2,3,7,8-二菲基双喹喔啉(M2)。2种单体分别与1,4-二炔基-2,5-二氧十二烷基苯共聚,得到了2种新型共轭共聚物,聚(2,3,7,8-二萘基双喹喔啉-二炔基-2,5-二氧十二烷基苯)(P1)(产率86.1%)和聚(2,3,7,8-二菲基双喹喔啉-二炔基-2,5-二氧十二烷基苯)(P2)(产率41.6%)。所得单体通过红外光谱、核磁共振等进行了表征。单体和聚合物的紫外-可见吸收光谱中M1的最大吸收波长在339nm,354nm处出现。M2的最大吸收波长分别在304nm,317nm处出现双吸收峰外,在长波431nm,459nm处出现双吸收峰。P1的最大吸收波长在448nm处出现,在305nm和317nm处出现2个吸收峰。P2在短波处吸收峰分别在350nm,368nm处出现。单体荧光光谱图中分别在480nm和579nm出现最大发射峰。聚合物分别在487nm和478nm处出现最大发射峰。得到的共聚物通过X射线衍射发现结晶性较差。  相似文献   

18.
电沉积法制备的聚苯胺-普鲁士蓝(PANI-PB)电致变色层与KCl掺杂的聚2-丙烯酰胺-2-甲基丙磺酸(PAMPS)的离子导电层相结合,组装制得8.5×12.5cm2全固态电致变色器件.该器件只需1~2 V的驱动电压,即可显示出良好的着、退色性能,当驱动电压为零,器件自身着色.紫外-可见分光光度计表征表明,该器件在600nm处的光可调节范围达到60%,具有较好的应用前景.  相似文献   

19.
以四(三苯基磷)钯(Pd(PPh3)4)和CuI作为催化剂,在二异丙胺和四氢呋喃溶液中,采用宽能带的1,4-二乙炔基-2,5-二(十二烷氧基)苯(PE)和窄能带的3,6-双(5′-溴-2′-噻吩)-哒嗪(TPD)以不同配料比合成了一系列新型聚芳炔。长链烷氧基的存在使得此类聚合物在常用的有机溶剂中具有较好的溶解性和成膜性。通过对上述聚合物的紫外-可见吸收、荧光发射及循环伏安等基本性能进行探讨可知,共聚物在THF溶液中的荧光量子效率为51%~61%;随着共聚物中TPD含量的增加,共聚物薄膜的吸收起始波长及荧光发射波长均有红移。聚合物薄膜的最大发射峰位于540~551nm。  相似文献   

20.
以3,4-二溴噻吩(DBrT)为原料,通过亲核取代和醚交换反应制备了带有羟基的双烷氧基取代噻吩,再采用开环-取代反应引入磺酸官能团,得到新型取代噻吩单体EDOT-S。采用红外光谱、紫外光谱和核磁共振氢谱、碳谱对此单体进行了表征。采用循环伏安法进行电化学聚合制得PEDOT-S,该聚合物的氧化电位和还原电位分别为442mV和371mV(vs.SCE)。PEDOT-S膜具有可逆的电致变色性能,在氧化态呈蓝绿色,还原态呈紫红色。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号