共查询到20条相似文献,搜索用时 15 毫秒
1.
金属掺杂是降低类金刚石薄膜(DLC)内应力、提高其机械性能的一种有效方法。通常,金属掺杂类金刚石薄膜(Me-DLC)为均匀的纳米复合结构,但在一定条件下,会形成特殊的自组织分层结构。为了研究不同金属掺杂种类对自组织分层结构和薄膜性能的影响,本文筛选了两种典型的掺杂金属元素Cu和Cr,采用磁控溅射与阳极层离子源复合系统制备了Cu-DLC和Cr-DLC薄膜,同时使用等离子体发射光谱仪检测了沉积过程中金属粒子密度变化;通过能谱仪、辉光放电光谱仪、透射电镜、拉曼光谱仪、X射线光电子能谱仪等表征了薄膜成分和微结构;采用纳米压痕仪与摩擦磨损试验机考察了薄膜的力学和摩擦学性能。结果表明,在靶中毒模式下,溅射出的金属粒子密度逐渐降低,导致薄膜形成了自组织梯度分层结构,即膜基界面处为富金属层,表面为富碳层,沿膜基界面到表面金属含量从13%(原子比)以上逐渐降低至1%以下。Cu-DLC和CrDLC薄膜相似的表面碳键结构和力学性能,并且在干摩擦以及油润滑条件下分别表现出相似的摩擦学行为。以上研究表明自组织梯度分层结构的形成降低了金属种类对Me-DLC薄膜结构和性能的影响。 相似文献
2.
PECVD法制备类金刚石薄膜的结构和摩擦学性能研究 总被引:4,自引:0,他引:4
采用射频一直流等离子体增强化学气相沉积技术在单晶硅衬底上沉积了类金刚石薄膜。用激光拉曼光谱仪和原子力显微镜对薄膜的结构和表面形貌进行了表征,并用纳米压痕仪测定了薄膜的硬度。用UMT微摩擦磨损试验机考察了薄膜在不同的滑行速度下薄膜的摩擦学性能。结果表明:所沉积的薄膜具有典型类金刚石薄膜的结构特征,薄膜表面光滑致密,硬度较高;薄膜与氧化铝陶瓷球对磨显示出良好的摩擦学性能,随着滑行速度的增加,薄膜的摩擦系数单调降低,但磨损寿命先增加后降低。 相似文献
3.
4.
5.
6.
7.
在分子动力学(Molecular dynamics,MD)仿真中利用高温加热和快速淬火,模拟制备出分别含有Cu或Si夹杂的类金刚石(DLC)薄膜,再通过刚性压头对表面的磨损,研究了夹杂含量(0%~30%)及位置分布(上、中、下)对材料摩擦性能的影响。仿真制备出的DLC薄膜密度为2.79g/cm~3,sp~2、sp~3杂化比例分别为36%、62%。摩擦结果表明,对于含Si-DLC复合薄膜,Si-C原子成键影响了材料中sp~3杂化比例,造成摩擦力随着夹杂含量的增加而下降;含Cu-DLC复合薄膜中Cu与C不成键,但一定量的Cu原子能够积聚造成滚珠效应,其摩擦力随夹杂含量增加先增后减。当两种夹杂仅分布在薄膜被摩擦的表面区域时,摩擦力均随夹杂含量的增加而下降;而分布在薄膜中间或底层时,表面的形变受到结构的阻碍难于传播到稍远的中间位置或最底层,因此,当中间层和最低层的夹杂含量改变时对表面磨擦性能的影响不大。 相似文献
8.
为了降低类金刚石(DLC)薄膜的应力,使用脉冲真空电弧离子镀(PVAD)和电子束热蒸发相结合的复合沉积技术,在Si基底上制备了一系列不同锗含量(原子百分比)的Ge-DLC薄膜样片,研究了锗含量对DLC薄膜光学特性和力学特性的影响。研究结果表明:在1~5μm波段,当锗掺杂含量小于25%时,对DLC薄膜光学常数的影响不大;随着Ge含量的增加,DLC薄膜的折射率和消光系数都略微增大。随着DLC薄膜中Ge含量的增加,薄膜的内应力和硬度均有所降低。当DLC薄膜中Ge含量约为8%时,Ge-DLC薄膜的内应力从6.3降至3.0 GPa,而硬度仅从3875减小为3640 kgf/mm2,几乎保持不变。硅基底上单面沉积Ge的含量为8%的DLC薄膜在红外3~5μm波段的透过率峰值约为63.15%。 相似文献
9.
10.
采用微米级别的AFM球头探针对硅掺杂类金刚石薄膜进行了摩擦实验。研究了微米尺度下,外加载荷和扫描速率对薄膜摩擦性能的影响。考虑粘附的影响,提出了适用于微观低载荷接触摩擦力表征的修正Amonton公式。分析了摩擦系数与表面形貌粗糙峰之间的关系,根据薄膜表面粗糙峰的分布,建立了微米尺度下球头探针与薄膜表面粗糙峰的等效接触模型,并推导出了摩擦力f关于载荷参数(p)和形貌参数()的函数表达式f(p,),表明单位面积接触粗糙峰密度对摩擦力大小起着主导作用。所建接触模型成功解释了摩擦实验现象产生的原因。 相似文献
11.
磷掺杂类金刚石薄膜的制备与性能研究 总被引:1,自引:0,他引:1
应用等离子体浸没离子注入与沉积方法合成了磷掺杂的类金刚石(P doped diamond like carbon,P-doped DLC)薄膜.结构分析表明磷以微米级岛状结构分散于DLC薄膜表层,P的掺杂增加了DIE薄膜的无序性,俄歇能谱证明岛型区域是由P、C、O三种元素形成的化合物,衰减全反射傅里叶红外光谱(ATR-FTIR)的分析结果显示存在P-O-P和P-O-C的非对称伸缩振动.掺杂表面表现出强烈的亲水性(水接触角为16.9°),体外血小板粘附实验结果显示,P掺杂DLC薄膜表面粘附的血小板少且变形小,表现出的血液相容性优于热解碳和未改性DLC.P-doped DLC薄膜与水的界面张力为2.7 Nj/cm2,具有较理想的接近于血细胞的界面张力,因此与血液保持了较高的相容性. 相似文献
12.
PECVD法沉积类金刚石膜的结构及其摩擦学性能 总被引:3,自引:2,他引:3
以C2H2为碳源,Ar气为辅助气体,利用射频等离子体化学气相沉积的方法在有机薄膜PET和载玻片上制备了类金刚石(diamond-like carbon,DLC)薄膜.通过红外光谱(FTIR)、拉曼光谱(Raman)分析了所制备DLC薄膜的结构;利用原子力显微镜(AFM)分析了薄膜的表面形貌;另外,还利用摩擦磨损仪对薄膜的机械性能进行了研究.实验得到:FTIR、Raman谱图分析发现碳氢膜主要由sp2和sp3杂化的碳氢化合物呈层状堆积而成,其组分与沉积参数密切相关;同时,sp2和sp3杂化比例影响所制备薄膜的致密性、均匀性和耐磨性能. 相似文献
13.
14.
在不同的射频负偏压作用下,利用微波电子回旋共振(ECR)等离子体源化学气相沉积技术在单晶硅表面进行制备类金刚石薄膜研究.利用傅立叶变换红外吸收光谱(FTIR)和原子力显微镜(ARM)对薄膜的结构成分和形貌进行了分析表征,同时对所制备的薄膜摩擦系数进行了测试.结果表明:所制备的薄膜具有典型的含H类金刚石结构特征,薄膜结构致密均匀、表面粗糙度小.随着负偏压的增大,红外光谱中2800 cm-1~3000 cm-1波段的C-H伸缩振动吸收峰的强度先升高后降低,在射频功率为50 W时达到最大,所对应的薄膜摩擦系数是先降低再升高,在射频功率为50 W时达到最小. 相似文献
15.
采用霍尔离子源沉积类金刚石薄膜是近年来新出现的一种方法 ,本文研究了自行研制的霍尔离子源的性能以及采用此离子源制备类金刚石薄膜及工艺参数的影响。结果表明 ,霍尔离子源在较低的电压即可起辉 ,可提供稳定的能量较低的离子束流。采用霍尔离子源沉积类金刚石薄膜的沉积速率约为 0 5nm/s。随着霍尔离子源灯丝电流的升高 ,离子源放电电压下降 ,制备的类金刚石薄膜的硬度下降。放电电流的变化对类金刚石薄膜的硬度影响不大。 相似文献
16.
γ射线辐照对类金刚石薄膜结构与特性的影响 总被引:5,自引:1,他引:4
用射频等离子体方法在玻璃基底上制备了类金刚石薄膜。分析了γ射线辐照类金刚石薄膜(以下简称DLC薄膜)的结构与特性改变。采用Raman及红外光谱进行结构分析表明:随辐照剂量的增加,在膜中出现SP3C—H及 SP2C—H 键的断裂与减少,SP3C—C键的略微增加.当辐照剂量达 10 ×104Gy时,SP3C—H键减少约50%,与此同时,出现膜中氢的重新键合,并从中释出。γ射线辐照使DLC薄膜的电阻率呈上升趋势,膜的类金刚石特征更加明显,结构得到改善。本文对γ射线对DLC薄膜的辐照机制进行了简要的讨论。 相似文献
17.
共掺杂n型CVD金刚石薄膜的结构和性能 总被引:1,自引:0,他引:1
李荣斌 《功能材料与器件学报》2007,13(4):330-338
利用微波等离子体化学气相沉积(MPCVD)技术制备硫掺杂及硼/硫共掺杂n型金刚石薄膜,探讨n型CVD金刚石薄膜的特性和共掺杂机理.研究结果显示:随着单一硫(S)掺杂含量的增加,金刚石薄膜导电激活能降低,薄膜生长速率减小,薄膜中非金刚石结构相增多;硼/硫(B-S)共掺杂有利于增加硫在金刚石中的固溶度,提高硫在金刚石晶体中的掺杂率,降低金刚石薄膜的导电激活能(在0.26~0.33eV);与单一S掺杂相比较,B-S共掺杂金刚石薄膜生长速率低,薄膜质量和晶格完整性好;霍耳效应测试表明硫掺杂和硼/硫共掺杂金刚石薄膜具有n型导电特征,载流子浓度在1016-1018/cm3之间,载流子迁移率在7~80cm2V-1s-1之间.采用B-S共掺杂技术有利于提高CVD金刚石薄膜的晶格完整性,使得B-S共掺杂金刚石薄膜具有更高的载流子迁移率. 相似文献
18.
19.
金属等离子体浸没离子注入与沉积技术合成类金刚石薄膜研究 总被引:1,自引:1,他引:1
采用金属等离子体浸没离子注入与沉积技术在9Cr18轴承钢基体表面合成了类金刚石薄膜.研究了注入脉宽和工作气压对合成薄膜性能及化学组成的影响;通过激光Raman光谱、维氏硬度、针盘试验和电化学腐蚀等测试手段分别表征了合成薄膜后试样表面的化学组成和微观结构、显微硬度、摩擦磨损性能和抗腐蚀性能.结果表明:合成薄膜后,试样的显微硬度增大了88.7%,摩擦磨损和抗腐蚀性能也明显改善. 相似文献
20.
以甲烷为源气体,高纯碳和金属铪为靶材,采用双靶共溅射磁控技术制备了铪掺杂类金刚石(Hf-DLC)薄膜,通过现代分析测试技术手段对薄膜的表面形貌、键合结构、化学组成和光学性能等进行表征、分析。结果表明,随着铪靶溅射功率的增大,薄膜中Hf含量增加,且薄膜中Hf与C形成纳米晶HfC;铪掺杂使得薄膜表面颗粒减小,变得更加细密。Hf-DLC薄膜的光学带隙在1.12~1.85 eV,表现出半导体材料带隙特性;Hf掺杂使得薄膜中sp2C含量降低,碳π~π*带边态密度增大,导致其光学带隙随着掺杂Hf量的增加而减小。因此,通过合理控制Hf-DLC薄膜中Hf的含量,可实现对薄膜的结构和光学带隙的有效调控。 相似文献