首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 748 毫秒
1.
在变形温度为1050~1180℃、应变速率为0.1~10s-1、最大真应变为0.7的条件下,采用Gleeble-3500热模拟试验机研究GH4199合金的热压缩变形行为,得到该合金的热变形激活能及热变形方程式,建立合金的热加工图,并通过组织观察对其热加工图进行解释。结果表明:在实验条件下,GH4199合金均表现出动态再结晶特征;变形温度和应变速率对合金流变应力及相应峰值应变大小的影响显著,流变应力及峰值应变均随着变形温度的降低和应变速率的增加而增大;在真应变为0.1~0.7时合金的热加工图相似,随着变形温度的升高及应变速率的降低,能量消耗效率逐渐升高;在应变速率为0.01s-1时,能量消耗效率达到峰值,约为41%。  相似文献   

2.
在Gleeble-1500热模拟机上对7056铝合金进行热压缩实验,变形温度为300~450℃,应变速率为0.01~10 s~(-1),研究其热压缩流变应力行为.结果表明:流变应力开始随应变的增加而增大,出现峰值后逐渐趋于平稳;应力峰值随着温度的升高而减小,随着应变速率的增大而增大;可用包含Zener-Hollomon参数的双曲正弦关系来描述合金热流变行为,其变形激活能为224.3826 kJ/mol.  相似文献   

3.
7475铝合金高温高应变速率压缩变形的流变应力   总被引:4,自引:1,他引:3  
在Gleeble-1500D热模拟试验机上进行高温高应变速率热压缩变形试验,研究了7475铝合金在340℃~420℃温度范围及0.1~10s。应变速率范围内的流变应力变化规律。结果表明,流变应力随应变速率的增加而增加,随温度的增加而降低;当在较高应变速率10s。时,随变形的进行,其流变应力甚至会低于应变速率为1s^-1时的流变应力;确定了合金的应变硬化指数n以及变形激活能Q,得到了适于所有应力状态的流变应力本构方程。  相似文献   

4.
采用Gleeble-1500型热模拟试验机对粉体成型Zr-2合金进行等温恒应变速率热压缩实验,研究其在热变形温度650~850℃,应变速率0.001~5 s-1条件下的热变形行为。基于热压缩实验数据,采用基于应变修正的Arrhenius方程构建了粉体成型Zr-2合金的变形本构模型。研究结果表明:变形温度对粉体成型Zr-2合金的流变应力影响明显,随着变形温度的增加,材料的流变应力大幅度降低。同时,粉体成型Zr-2合金的热变形流变应力表现出对应变速率敏感的特征,即变形抗力随着应变速率的上升而增加,但在低温(650、700℃)、高应变速率5 s-1条件下变形抗力增加并不明显。基于应变修正的Arrhenius方程构建的粉体成型Zr-2合金的本构方程,其相关系数为0.9827,可以较为准确地预测该材料的流变应力。  相似文献   

5.
超高强铝合金7A04高温流变行为的研究   总被引:2,自引:0,他引:2  
通过在Gleeble-1500热模拟实验机上对7A04铝合金进行高温压缩实验,研究了该合金变形温度在300~450℃,应变速率在0.01~10 s-1范围内的高温流变变形行为。结果表明:流变应力随变形温度的升高而降低,随着应变速率的增加而升高。建立了一个综合考虑应变、温度、应变速率三者影响的流变应力方程,预测值与拟合实验值非常接近,结果表明:该流变应力方程用来预测7A04铝合金材料一般加载情况下的热成形过程是比较可靠的。  相似文献   

6.
7150铝合金高温热压缩变形流变应力行为   总被引:7,自引:2,他引:5  
在Gleeble-1500热模拟机上对7150铝合金进行高温热压缩实验,研究该合金在变形温度为300~450 ℃和应变速率为0.01~10 s~(-1) 条件下的流变应力行为.结果表明:流变应力在变形初期随着应变的增加而增大,出现峰值后逐渐趋于平稳;峰值应力随着温度的升高而减小,随着应变速率的增大而增大;可用包含Zener-Hollomon参数的Arrhenius双曲正弦关系来描述合金的热流变行为,其变形激活能为226.698 8 kJ/mol;随着温度的升高和应变速率的降低,合金中拉长的晶粒发生粗化,亚晶尺寸增大,再结晶晶粒在晶界交叉处出现并且晶粒数量逐渐增加;合金热压缩变形的主要软化机制由动态回复逐步转变为动态再结晶.  相似文献   

7.
在Gleeble-1500D热模拟实验机上,在应变速率为0.01~5 /s、变形温度为600~800 ℃条件下,采用高温等温压缩实验对Cu-2.0Ni-0.5Si-0.03P合金的流变应力行为进行研究。结果表明:热模拟实验中,应变速率和变形温度的变化强烈地影响合金流变应力的大小,流变应力随变形温度升高而降低,随应变速率提高而增大;在应变温度为750和800 ℃时,合金热压缩变形流变应力出现明显的峰值应力,表现为连续动态再结晶特征。从流变应力、应变速率和温度的相关性,得出该合金热压缩变形时的热变形激活能和本构方程。  相似文献   

8.
6082铝合金的高温本构关系   总被引:2,自引:0,他引:2  
韦韡  蒋鹏  曹飞 《塑性工程学报》2013,20(2):100-106
利用Gleeble-3500热模拟机,研究6082铝合金在350℃~500℃、应变速率10-2s-1~5s-1、最大变形程度60%条件下的热压缩变形行为。得到了高温下该铝合金的真应力-应变曲线。分析流变应力与应变速率和变形温度之间的关系,建立了高温热变形的本构关系。推导出包含Arrhenius项的Zener-Hollomon参数所描述的高温流变应力表达式。为减少应变的影响,建立4阶多项式对材料参数进行拟合,得到改进的本构方程,并与实验值进行对比。结果表明,应变速率和变形温度对6082铝合金流变应力有显著影响,流变应力随变形温度的升高而降低,随应变速率的增大而增大。该合金属于正应变速率敏感材料,合金热变形过程受热激活控制,激活能为145.977kJ/mol。  相似文献   

9.
在变形温度为380~500℃,应变速率为0.001~10 s-1的条件下,采用Gleeble-1500热模拟试验机对含钪Al-Cu-Li-Zr合金的热变形行为进行了研究。结果表明:含钪Al-Cu-Li-Zr合金流变应力随变形温度升高和应变速率的降低而减小;变形初期,应力值随应变的增加迅速提高,显示出明显的加工硬化效应。当应力值达到峰值后,随着变形增加,流变应力逐步降低,合金出现明显的软化现象。根据流变应力本构方程及利用作图法和线性回归方法求解得出各参数值,得出流变峰值应力方程;该合金在高温压缩试验中会发生动态回复,在一定条件下会发生动态再结晶,并且温度越高应变速率越低,该合金越易发生动态再结晶,从而表现出其流变应力越低。  相似文献   

10.
Al-Zn-Mg-Sc-Zr合金的热变形行为及加工图   总被引:2,自引:0,他引:2  
在Gleeble-1500热模拟试验机上对Al-5.5Zn-1.5Mg-0.2Sc-0.1Zr铝合金进行高温等温压缩实验,研究该合金在变形温度为300~500℃、应变速率为0.01~10s-1条件下的流变行为,建立合金高温变形的本构方程和加工图,采用电子背散射衍射(EBSD)分析变形过程中合金的组织特征.结果表明流变应力随变形温度的升高而降低;当应变速率ε=10s-1,变形温度为300~500℃时,合金发生了动态再结晶.Al-5.5Zn-1.5Mg-0.2Sc-0.1Zr合金的高温流变行为可用Zener-Hollomon参数描述.在热变形过程中,随着真应变增加,合金的变形失稳区域增大.该合金适宜的变形条件如下变形温度300~360℃、应变速率0.01~0.32s-1,或变形温度380~500℃、应变速率0.56~10s-1.  相似文献   

11.
在Gleeble-3500热模拟机上采用等温压缩实验研究了ZnAl10Cu2合金在温度为210~300℃、应变速率为10-2~10 s-1条件下的热变形行为,获得了该合金热变形过程中的真应力-应变曲线.结果表明:ZnAl10Cu2合金的峰值流变应力随温度升高而降低,随应变速率的提高而增大.通过双曲正弦模型确定了该合金的...  相似文献   

12.
在Gleeble-1500热模机上对2026铝合金进行了热压缩实验,研究该合金在变形温度为300~500℃、应变速率为0.01~10 S-1条件下热压缩变形流变应力行为.结果表明:流变应力开始随应变的增加而增大,出现峰值后逐渐减小并趋于平稳,表现出流变软化特征;应力峰值随温度的升高而减小,随应变速率的增大而增大;可用包含Zener-Hollomon参数的Arrhenius双曲正弦关系来描述2026铝合金热变形行为,其变形激活能为256.02KJ/mol.合金热压缩变形的主要软化机制由动态回复转化为连续动态再结晶.  相似文献   

13.
在Gleeble-1500D热模拟试验机上,采用高温等温压缩试验,对Cu-2.0Ni-0.5Si-0.15Ag合金在应变速率为0.01~5s-1、变形温度为600~800℃、最大变形程度为60%条件下的流变应力行为进行了研究.分析了实验合金在高温变形时的流变应力和应变速率及变形温度之间的关系.并研究了在热压缩过程中组织的变化.结果表明:热模拟实验中,应变速率和变形温度的变化强烈地影响合金流变应力的大小,流变应力随变形温度升高而降低,随应变速率提高而增大.从流变应力、应变速率和温度的相关性,得出了该合金高温热压缩变形时的应力指数n,应力参数α,结构因子A,热变形激活能Q和流变应力方程.合金动态再结晶的显微组织强烈受到变形温度的影响.  相似文献   

14.
采用Gleeble 3800热压缩试验机、Deform-3D有限元软件和光学显微镜研究了Inconel 718高温合金在950~1150℃温度范围和应变速率0.1~10 s-1范围内的组织演变和温度场模拟。结果表明,在低变形温度和高应变速率下,初始阶段随着应变的增加,流变应力迅速增加到峰值。达到峰值应力后,流变曲线呈现出明显的流变软化现象。在低变形温度、高应变速率下,产生的变形热较大,合金易于发生动态再结晶,且动态再结晶程度较高,晶粒尺寸较小。当应变速率降低,变形热也逐渐降低,合金内部动态再结晶的晶粒体积分数减少。在变形温度为1100℃和应变速率为0.1 s-1时,合金发生完全动态再结晶。基于Deform-3D软件模拟的温度场分布结果可知,低变形温度、高应变速率的热变形条件会使合金内部产生较大的变形热,随着变形温度的升高和应变速率的降低,变形热的值逐渐减小。当变形温度和应变速率一定时,合金内的变形热会随真应变的增加而不断增加。  相似文献   

15.
在Gleeble-1500热模拟机上对Al-Mn-Mg-RE合金进行等温热压缩试验,变形温度300~500℃,应变速率0.01~10s-1。结果表明:Al-Mn-Mg-RE合金流变应力均随应变的增加而迅速增大至峰值,之后随应变的增加而呈不同程度的减小。峰值应力随着变形温度的升高和应变速率的降低而逐渐减小;采用Zener-Hollomon模型和温度补偿的应变速率因子Z参数值的双曲正弦模型来描述该合金热压缩变形流变应力行为,其热变形激活能为186.482kJ/mol;在高Z值条件下的变形组织是拉长晶的亚晶内存在大量位错,而在低Z值条件下再结晶组织内形成了完整的亚晶结构。  相似文献   

16.
2519铝合金热变形流变行为   总被引:23,自引:11,他引:23  
采用Gleeble-1500热模拟机进行高温等温压缩实验,研究了2519铝合金在变形温度为300~450℃、应变速率为0.01~10 s-1条件下的流变变形行为.结果表明:应变速率和变形温度对合金流变应力的大小有显著影响,流变应力随温度升高而降低,随应变速率的提高而增大,在应变速率ε<10 s-1条件下,流变应力开始随应变增加而增大,达到峰值后趋于平稳,表现出动态回复的特征;而在ε=10 s-1,t≥350℃的变形条件下,合金发生了局部动态再结晶.可用包含Arrhenius项的Zener-Hollomon参数描述2519铝合金高温塑性变形时的流变行为.  相似文献   

17.
利用Gleeble3500热模拟机,研究TiB95合金在高温塑性变形过程中的流变应力行为,试验应变速率为0.01~10s-1,变形温度为850℃~1050℃,变形量均为60%。对TiB95合金真应力-真应变曲线进行分析,结果表明:在相同的应变速率下,流变应力随着温度的升高而降低;而在相同的变形温度下,流变应力随着应变速率的减小而降低。同时,通过Zener-Hollomon模型建立的TiB95合金高温变形时的流变应力模型表征了变形温度、应变速率和变形程度对流动应力的影响,模型的计算精度较高,形变激活能Q为723.679kJ/mol。  相似文献   

18.
在变形温度700~860 ℃、应变速率0.001~1 s-1下,对TB6合金进行热压缩变形,以研究TB6合金的热压缩流变应力行为.研究温度、变形量、应变速率等因素对TB6热变形流变应力的影响,建立了TB6合金热变形流变应力的本构模型方程.结果表明:合金在热压缩过程中,流变应力随着应变的增大而增加,达到峰值应力后逐渐趋于平稳;应力峰值随着应变速率的增大而增大,随着温度的升高而呈减小趋势.  相似文献   

19.
采用Gleeble-1500D热模拟试验机,对Cu-Ni-Si-Cr合金在变形温度为600~800℃、应变速率为0.01~5 s-1条件下的动态再结晶行为以及组织转变进行了研究,分析了实验合金在高温变形时的流变应力和应变速率及变形温度之间的关系,并研究了在热压缩过程中组织的变化.结果表明:应变速率和变形温度的变化强烈地影响合金流变应力的大小,流变应力随变形温度升高而降低,随应变速率提高而增大,材料显微组织强烈受到变形温度的影响.  相似文献   

20.
为了研究Mg-Zn-Zr-Gd合金的热压缩变形行为,采用Gleeble-3500型热模拟试验机,在变形温度为300~400℃,变形速率为0.001~1 s-1条件下对合金进行热压缩实验。分析了在不同的热压缩条件下合金的真应力-真应变曲线,通过引入Z参数建立了相关流变应力本构方程,同时观察了合金的微观组织演变。结果表明:合金在热压缩变形过程中主要发生了动态再结晶,且合金的流变应力随着应变速率降低和温度升高而减小。在低变形温度或高应变速率下进行热压缩变形时,再结晶晶粒比较细小,但是动态再结晶进行不充分,动态再结晶仅仅发生在晶界处且分布不均匀,仍然存在原始大晶粒。随着变形温度的升高和应变速率的降低,再结晶区域明显增加,再结晶晶粒也逐渐长大。根据热加工图分析得到合金最佳的热加工成形工艺区域为:温度为350~400℃,应变速率为0.1~1 s-1。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号