首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
在微波等离子体化学气相沉积法同质外延生长单晶金刚石的过程中添加不同浓度的氮气,利用发射光谱、拉曼光谱等测试手段探究不同浓度氮气对等离子体以及单晶金刚石生长质量和速率的影响,通过分析等离子体内部基团强度的变化探究添加氮气对单晶金刚石生长机理的影响。探究发现:氮气的添加对于等离子体内基团的种类并没有明显改变,但随着氮气浓度的升高,CN基团的基团强度具有明显升高的趋势,C2基团的基团强度不断降低,单晶金刚石的生长速率不断提高。氮气并不是通过提高甲烷的离解度来产生更多的C2基团从而促进单晶金刚石的生长,而是作为一种催化剂加快单了晶金刚石表面的化学反应。当氮气浓度低于0.5%时,单晶金刚石的生长速率提高幅度较大且生长质量良好。但当氮气浓度超过0.8%时,单晶金刚石的生长速率逐渐趋近于饱和,且非金刚石相不断增多,生长质量不断降低,因而通入氮气的最佳浓度应该低于0.5%。  相似文献   

2.
等离子体发射光谱作为一种非侵入性等离子体诊断手段能有效探测等离子体内部基团的变化信息,对这些信息的分析可以反映等离子体的特性,从而有助于探究影响单晶金刚石生长结果的原因和机理。CO2是一种比O2更安全的气体,近年来在源气体引入CO2生长高质量单晶金刚石的研究日渐增多。本文利用微波等离子体化学气相沉积法在4.2 kW的微波功率下进行单晶金刚石同质外延生长实验,对生长过程中的CH4/H2/CO2等离子体进行了发射光谱诊断,最后结合光谱信息和拉曼光谱表征研究了CO2体积分数对单晶金刚石生长质量的影响,结果发现CO2浓度增加对C2和CH基团强度抑制作用明显,对C2抑制作用最强,这也是导致生长速率下降的主要原因。I(CH)/I(Hα)比值略有增加,说明CO2增加对金刚石前驱物的沉积有促进作用,这在一定程度上减弱了对生长速率的不利影响。拉曼表征结果说明0~5%CO2浓度下的单晶金刚石质量随CO2浓度上升变好,且浓度为5%时,...  相似文献   

3.
利用微波等离子体化学气相沉积法在CH_4/H_2反应气体中引入不同低浓度氮气条件下,研究氮气对单晶金刚石生长质量的影响。利用发射光谱、拉曼光谱以及扫描电子显微镜对单晶金刚石质量进行表征。结果表明:随着气源中氮气浓度的增加,单晶金刚石增长速率随之增加,表面多晶缺陷得到抑制,且Raman光谱法测得一阶特征拉曼峰随着氮气浓度的提高而向高波数移动,呈现出压应力,整体质量变差。经过退火过程之后,引入氮原子的单晶金刚石生长拉应力得到释放,样品呈现出拉应力。  相似文献   

4.
利用微波等离子体化学气相沉积法在CH_4/H_2反应气体中引入不同低浓度氮气条件下,研究氮气对单晶金刚石生长质量的影响。利用发射光谱、拉曼光谱以及扫描电子显微镜对单晶金刚石质量进行表征。结果表明:随着气源中氮气浓度的增加,单晶金刚石增长速率随之增加,表面多晶缺陷得到抑制,且Raman光谱法测得一阶特征拉曼峰随着氮气浓度的提高而向高波数移动,呈现出压应力,整体质量变差。经过退火过程之后,引入氮原子的单晶金刚石生长拉应力得到释放,样品呈现出拉应力。  相似文献   

5.
借助高速光纤光谱仪对ECR微波等离子体进行实时诊断,研究了等离子体空间分布以及工作气压和甲烷浓度对等离子体发射光谱的影响,并在ECR-MPCVD设备上研究了单晶金刚石同质外延生长工艺。在CH4/H2体系下,ECR微波等离子体与运行于中高气压下等离子体中所含基团种类基本相同。且等离子体各基团谱峰相对强度沿磁场强度梯度下降的方向减弱,在磁场共振区(875 Gs)最强,将基片台置于磁场共振区,则基片台附近各基团谱峰相对强度随气压的升高先增强后减弱,I(H_(α))、I(H_(β))、I(H_(γ))峰值在气压0.6 Pa附近,I(CH)和I(C_(2))峰值在0.8 Pa附近。保持工作气压为0.8 Pa,甲烷浓度从0.5%增加到8%的过程中,I(H_(α))几乎不变,I(H_(β))和I(H_(γ))先降低后趋于饱和,I(CH)和I(C_(2))先增强后趋于饱和;I(H_(α))/I(C_(2))先急剧下降后缓慢减小再趋于饱和,I(H_(α))/I(CH)缓慢减小并趋于饱和,I(CH)/I(C_(2))和I(H_(γ))/I(H_(β))基本不变。以微波功率1200 W,氢气流量50 mL/min,甲烷浓度3%,工作气压0.8 Pa,金刚石种晶温度800℃的条件下生长10 h,在抛光的单晶金刚石表面得到了呈台阶状生长的外延层,生长速率为200 nm/h。  相似文献   

6.
硼掺杂对直流热阴极CVD金刚石薄膜生长特性的影响   总被引:3,自引:0,他引:3  
采用直流热阴极CVD法以B(OCH3)3为掺杂剂制备了硼掺杂金刚石薄膜,利用等离子体发射光谱、SEM、Raman和XRD研究了硼掺杂对金刚石薄膜生长特性的影响,通过与未掺杂金刚石薄膜的对比发现:在直流热阴极CVD系统中,低浓度硼掺杂条件下能够长时间维持稳定的辉光放电. 掺硼后辉光等离子体活性基团(Hα、Hβ、C2、CH)的种类没有改变,但C2基团的浓度升高,而CH基团的浓度下降,薄膜的生长速率提高到0.65mg·cm-2·h-1. 硼掺杂金刚石薄膜为多晶薄膜,晶体生长良好,取向以(111)晶面为主,质量较未掺杂薄膜有所提高. 硼原子以取代或填隙的方式掺杂进入金刚石晶格,没有破坏金刚石晶体结构.  相似文献   

7.
单晶金刚石是一种性能优异的晶体材料,在先进科学领域具有重要的应用价值。在微波等离子体化学气相沉积(Microwave plasma chemical vapor deposition, MPCVD)单晶金刚石生长中,如何提高晶体的生长速率一直是研究者们关注的重点问题之一,而采用高能量密度的等离子体是提高单晶金刚石生长速率的有效手段。在本研究中,首先通过磁流体动力学(Magnetohydrodynamic,MHD)模型仿真计算,优化设计了特殊的等离子体聚集装置;随后基于模拟结果进行生长实验,采用光谱分析和等离子体成像对等离子体性状进行了研究,制备了单晶金刚石生长样品;并通过光学显微镜、拉曼光谱对生长样品进行测试。模拟结果显示,聚集条件下的核心电场和电子密度是普通条件下的3倍;生长实验结果显示,在常规的微波功率(3500W)、生长气压(18kPa)下得到的高能量密度(793.7 W/cm3)的等离子体与模型计算结果吻合。高能量密度生长条件并不会对生长形貌产生较大影响,但加入一定量氮气能够显著改变生长形貌,并对晶体质量产生影响。采用这种方法,成功制备了高速率(97.5μm/h)单晶金刚石。不...  相似文献   

8.
在传统的波导耦合微波等离子体化学气相沉积装置中引入双基片结构,测量了金刚石沉积过程中的等离子体发射光谱,通过与单基片结构对比,比较研究了双基片对微波等离子体参数的影响。研究表明:在相同金刚石沉积参数下,双基片结构相比于单基片结构下等离子体基团强度更高。其中H_α基团强度远高于单基片台下H_α基团强度;随着甲烷浓度的增加,双基片结构下C_2基团强度上升更加显著,且在相同条件下,双基片结构下C_2与H_α的比值更小,有利于提高金刚石膜的质量。此外,双基片结构下等离子体电子温度较低且随气压的上升而进一步降低。  相似文献   

9.
提高生长速率是降低金刚石薄膜应用成本的关键因素之一,目前研究的提高速率的方法中以偏压电子增强为主,而该方法不适宜表面复杂的刀具涂层。本文通过在无偏压热丝化学气相沉积沉积金刚石薄膜条件下添加少量的Ar,成功将生长速率提高3倍,并采用等离子发射光谱研究了其反应机制,尤其对反应系统电子温度的变化做出了详细推理分析。实验结果采用扫描电镜、Raman光谱进行表征。结果表明:氩气的添加不仅可促进二次成核,使得晶粒尺寸达到纳米级,而且一定量的氩气(8%~32%)可提高金刚石薄膜的生长速率,当氩气含量在8%~32%范围内时,金刚石薄膜的生长速率随氩气浓度增大而增大,本实验获得最高生长速率达3.75μm/h,是无Ar情况下的3倍。光谱诊断显示的主要基团为CO(283~370nm),CH(387.0 nm),H_β(486 nm),H_α(656.3 nm),氩气添加后这些基团的光谱强度均显著增强。当氩气含量为7%~30%时,电子温度与氩气浓度成正比,为金刚石薄膜的生长提供了更优越的条件,生长速率得到提高。  相似文献   

10.
氧碳比对MPCVD法同质外延单晶金刚石的影响   总被引:1,自引:0,他引:1  
吴高华  王兵  熊鹰  陶波  黄芳亮  刘学维 《功能材料》2013,44(14):2065-2068,2073
以Ib型(100)取向高温高压(HPHT)单晶金刚石为基底、H2-CH4-CO2混合气为反应气源,利用10kW、2.45GHz不锈钢谐振腔式微波等离子体化学气相沉积(MPCVD)装置进行金刚石同质外延生长。通过光学显微镜表征外延生长金刚石的表面形貌;Raman光谱表征金刚石的结晶质量;螺旋测微仪测厚再计算生长速率,着重探讨工艺因素中氧碳比对同质外延金刚石生长速率、表面形貌、金刚石结晶质量的影响。结果表明随着氧碳比的增加,金刚石生长模式由二维形核模式转变为台阶流模式,结晶质量提高,生长速率变慢;在微波功率7.8kW、CH4浓度(与H2的比例)8%、气压18kPa、基底温度1080℃条件下,氧碳比为0.8时,金刚石结晶质量好且生长速率高(达16μm/h)。反应气源中引入合适比例的CO2是获得高的生长速率同时有效改善同质外延单晶金刚石结晶质量的有效方法。  相似文献   

11.
利用微波等离子体化学气相沉积(MPCVD)法在高温高压(HPHT)下制备的单晶片上进行单晶金刚石同质外延生长,研究了甲烷浓度和衬底温度对金刚石生长的影响。利用扫描电子显微镜与激光拉曼光谱仪对生长前后的样品进行表征。结果表明,利用HPHT单晶片上生长时,主要为层状生长和丘状生长模式,丘状生长易出现多晶结构。降低甲烷浓度能够降低丘状生长密度,提高金刚石表面平整度;金刚石生长速率随甲烷浓度、工作气压和衬底温度的增加而提高,但过高的甲烷浓度(72%)和衬底温度(1 150℃)会降低金刚石的质量。所生长出的单晶金刚石质量较为理想,衬底与生长层之间过渡比较自然,金刚石结晶度高,缺陷密度小,但随膜层增厚,非晶碳含量有所增加。  相似文献   

12.
报道了利用光发射谱(OES)和朗谬尔探针对热阴极直流放电等离子体化学气相沉积金刚石薄膜的等离子体条件进行原位研究的部分结果,研究了几种过程参数变化中等离子体状态,并与金刚石膜的沉积相联系。当CH4浓度变化时,CH基团的发射强度和电子密度ne的变化表现出相似趋势,均出现一极大值。而在高CH4浓度,C2的发射出现。在气压变化过程中,CH的发射强度和ne均随气压的升高而下降,C2的发射强度变化不大。用OES和朗谬尔探针测量的电子温度Te所显示的结果是一致的。在这些过程中,电子碰撞应该是CH发射的主要机制,C2的发射应该来源于化学发光或热激发。  相似文献   

13.
利用微波等离子体化学气相沉积(MPCVD)法,在天然金刚石衬底的(111)晶面上同质外延生长单晶金刚石,研究了沉积温度、CH_4浓度以及小角度偏离(111)晶面的衬底对金刚石生长的影响。采用SEM和Raman对外延生长的金刚石进行表征,结果表明:高沉积温度、高CH_4浓度条件下,金刚石呈现出无序的多晶生长现象,随着沉积温度的降低,形貌和质量明显提高,在低沉积温度条件下金刚石表现出一致的单晶生长,但是表面形貌较为粗糙。进一步降低CH_4浓度可外延生长质量高、表面平整的单晶金刚石,速率达4.7μm/h.使用倾斜抛光方法将部分衬底面偏离(111)晶面约6°,对比实验发现,微小偏离(111)晶面的斜面衬底在高沉积温度、高CH_4浓度条件下也能生长出质量较好的单晶金刚石,生长速率明显提高,达到了9μm/h。  相似文献   

14.
利用原位光发射谱对衬底附近的化学气相性质进行了研究.研究表明,氮气的引入使得金刚石生长的气相化学和表面化学性质发生了很大变化.含氮基团的萃取作用提高了金刚石表面氢原子的脱附速率,从而提高了金刚石膜的生长速率.而含氮基团的选择吸附使金刚石(100)取向变得化学糙化,这种化学糙化使得(100)晶面生长速率远大于其它晶面,最终使金刚石薄膜呈现(100)织构.还利用化学气相沉积方法研究了氮气浓度对金刚石生长的影响,结果与光发射谱分析是一致的.  相似文献   

15.
采用自制10kW微波等离子体装置,在CH_4/H_2气源中添加不同浓度O_2,探讨了O_2对金刚石薄膜生长的影响。利用扫描电子显微镜、激光拉曼光谱仪以及X射线衍射仪对金刚石薄膜的表面形貌、结晶质量以及晶粒取向进行了表征。结果表明,O_2浓度在0~0.9%范围内,所制备的金刚石薄膜品质随着O_2浓度的提升逐渐升高,当O_2浓度达到0.9%时,所制备的金刚石薄膜品质最好,其杂质含量低,金刚石半高宽值达到6.2cm~(-1),且金刚石晶粒基本表现为(111)面生长,具有较高晶面取向。但当O_2浓度超过到1.0%后,金刚石的生长会遭到破坏。  相似文献   

16.
采用自制的微波等离子体化学气相沉积装置,在高温高压法合成的金刚石的衬底上外延生长单晶金刚石。实验分为两步,首先用氢氧等离子体在生长之前进行预处理刻蚀,然后外延生长30 h。利用金相显微镜和激光拉曼光谱来表征单晶金刚石刻蚀坑以及外延生长的单晶金刚石质量。研究结果表明,氧会优先刻蚀籽晶表面的缺陷和位错,可以通过刻蚀坑密度来判断衬底质量,且经过预处理刻蚀能消除单晶金刚石表面的缺陷。籽晶表面经刻蚀后会出现平底型和尖锥型两种倒金字塔型刻蚀坑,且晶体表面的原本缺陷或由抛光造成起的缺陷会随刻蚀时间延长、刻蚀强度增大而消失。经过氢氧等离子体预处理外延生长的单晶中非金刚石相杂质含量较少,结晶性高。  相似文献   

17.
采用基于密度泛函理论的第一性原理方法研究CVD金刚石薄膜(001)表面的生长机理。计算清洁金刚石表面和氢(H)终止金刚石表面的构型。考察H原子和活性基团(C,CH,CH2和CH3)在清洁重构金刚石表面及在单层H终止金刚石表面上的吸附演变。结果表明:清洁金刚石表面发生了对称二聚体重构,H原子终止金刚石表面稳定了金刚石结构;基团在金刚石(001)表面吸附演变过程中,H原子起到激活石墨和萃取表面H原子产生活性位的作用;CH2基团比CH3基团能够更好地提高CVD金刚石薄膜的生长率,是薄膜生长过程中最有效基团;CH基团阻碍了薄膜的生长。  相似文献   

18.
在实验室自主研制的10 kW微波等离子体化学气相沉积装置上,通过改变气体的进出方式,探讨了气体流动方式对金刚石膜均匀性和质量的影响。结果表明:随着Si基片表面气体分子数增多,等离子体中的H原子和CH活性基团强度增强,扩散到基片表面中心的原子H和含碳活性基团增多,基片中心区域的金刚石膜生长速率略微有所提升,由原来的2.5μm/h提高到2.8μm/h,沉积得到的金刚石膜质量和均匀性均得到改善。  相似文献   

19.
等离子体稳定性对曲面金刚石膜生长的影响   总被引:1,自引:0,他引:1  
采用直流等离子体喷射化学气相沉积(DCPJCVD)制备曲面金刚石膜,等离子体稳定性对金刚石膜生长十分重要。研究表明,曲面金刚石膜长时间生长,阳极积聚石墨碳点,等离子体流动受阻失稳,金刚石膜含较多杂质。通过对阳极除碳处理,可维持稳定的等离子体、稳定的电子温度Te、均匀的活性原子及原子基团密度。制备的金刚石膜经SEM、Raman等表征,发现曲面金刚石膜致密、晶粒均匀,仅发现金刚石特征峰,制备的曲面金刚石膜质量较高。  相似文献   

20.
在实验室自制的10 kW微波等离子体化学气相沉积装置中,系统分析提高功率对生长金刚石膜的影响。利用等离子体发射光谱诊断分析高功率微波等离子体放电环境的特征,同时采用扫描电镜及Raman光谱对不同功率条件下获得的金刚石膜的形貌和质量进行表征。结果表明:微波功率的提高可以获得面积更大的强场区域,为金刚石的大面积均匀成膜提供了有利条件;同时提高微波功率可以产生更高的电子密度,激发更多的活性氢原子和有利于金刚石生长的含碳基团;在气压为15 kPa,H_2/CH_4流量比为200∶6 mL/min的条件下,当功率由4000上升到5000 W时,金刚石膜的质量明显得到提高;当功率升高到5500 W时,金刚石质量开始下降,出现孪晶;但在升高功率的过程中,晶粒尺寸增大的趋势没有改变。因此,提高微波功率易于活性氢原子的产生并可更为充分的活化含碳大分子基团;在本实验条件下,当微波功率为5000 W时,所制备的金刚石膜可具有较高的质量。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号